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Abstract. The emergence of Large Language Models (LLMs) brought
new approaches to Knowledge Graph Question Answering (KGQA), chas-
ing the vision of querying structured data using natural language. While
existing work focuses on improving KGQA approaches, this paper ex-
plores the impact of different knowledge graph representations. We con-
sider three dimensions of representation: (i) subsets, (ii) modeling, and
(iii) annotations, hypothesizing that different variations impact the F1
scores of KGQA systems. We conduct experiments on a custom knowl-
edge graph featuring integrated data and n-ary relations. Results demon-
strate a substantial improvement in the F1 score from 17.6% to 44.5%
between the default and best variant, confirming the hypothesis.

Keywords: Question answering · Knowledge graphs · Large language
models · Knowledge representation .

1 Introduction

Knowledge Graph Question Answering (KGQA) persues the vision that users
ask questions in natural language that are answered based on factual data. While
KGQA is still a hard task to solve, the emergence of Large Language Models
(LLMs) has led to new possibilities [3,12]. Research on LLM-augmented KGQA
focuses on improving the approaches but assumes a KG with a given, fixed
representation.

We consider a different angle and evaluate different representations of KGs
with the same KGQA approach. Specifically, we represent the same knowledge in
different ways, varying in explicit information. Our hypothesis is the following:
Different representations of KGs impact the F1 score of LLM-augmented KGQA.
To the best of our knowledge, this is the first work that explores this angle.

We identify at least three major dimensions of KG representations:

– Subsets. Most KGs are too large to be entirely added to the LLM prompt.
Therefore, approaches to KGQA obtain relevant subgraphs to discover and
understand the KG.
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– Modeling. Modeling options for ontologies in KGs are numerous. Different
modeling options vary in expressiveness and explicitness of the information
used to describe the same knowledge.

– Annotations. Annotations do not "contribute to the ’logical’ knowledge"
[9, Section 8] in a KG but provide additional information as text.

The dimensions have considerable depth and warrant dedicated research.
We focus on selected subdimensions, which we quantitatively evaluate through
experiments to test our hypothesis.

The experiments are conducted on a custom KG (see Section 5.3) and use
Graf von Data (GvD) (see Section 5.1), a KGQA agent similar to the state-of-
the-art (SPINACH [13]) that is KG-agnostic. The results show an increase in
the F1 score from 17.6% for the default variant to a maximum of 44.5%, an
improvement of 26.9pp/153%, confirming the hypotheses.

Our contributions are (i) a KG unknown to LLMs, including integrated data
and n-ary relations, and (ii) a quantitative performance evaluation of selected
KG representations for KGQA.

The remainder of the paper is structured as follows. Section 2 positions the
paper w.r.t. related work. Section 3 introduces an example. Section 4 discusses
considered variants. Section 5 explains the experimental setup. Section 6 de-
scribes the conducted experiments and discusses the results. Section 7 concludes
the paper and outlines future work.

2 Related Work

Multiple fundamental approaches to LLM-augmented KGQA have emerged us-
ing different interfaces through which the LLM obtains KG data. In finetuning
approaches, LLMs are specifically trained on a KG [22]. In workflow approaches,
information from the KG in the form of example question-answer-pairs [17,24],
ontology terms [10], a KG subgraph [1,11,17], and/or URIs [24] is added to the
prompt that instructs the LLM. In agent approaches, an agent iteratively ob-
tains information from the KG through actions [23] to build a SPARQL query
that, when executed, retrieves the answer. The core actions are searching entities
(Search) [13,21], retrieving entities (Describe) [13,20,21], and executing SPARQL
queries (Query) [13,21]. Some agents also include searching paths between two
entities [20] and retrieving usage examples of properties [13].

While the approaches may differ, all obtain information from the KG that
changes with KG representation. Varying subsets impact some workflow and
all agent approaches. Varying modeling impacts all approaches because mod-
eling is intrinsic to the KG. Varying annotations impact all finetuning, some
workflow, and all agent approaches.

The SPINACH agent [13] achieves state-of-the-art results on Wikidata. Con-
sequently, we focus on agent approaches. However, the SPINACH agent’s actions
are not knowledge graph-agnostic. Therefore, we conduct our experiments using
our own agent (see Section 5.1).
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3 Example

In the following, we explore how varying KG representations might impact the
agent’s result for the natural language question: "companies in Germany". Our
KG (see Section 5.3) describes enterprises in the semiconductor industry. The
KG contains a Geo pattern (Figure 1a), in which terms from the Organiza-
tion Ontology [18] and GeoNames’ ontology3 express in which regions an or-
ganization has sites. The hierarchical regions are connected with the transitive
gn:parentFeature property. For prefixes, we refer to the repository linked in
the KG description in Section 5.3.

(a) Geo pattern.

(b) Keyfigure pattern.

(c) Supply pattern.

Fig. 1: Important patterns in our ontology visualized in Graffoo [6] notation.

The required SPARQL query to retrieve companies in Germany uses the Geo
pattern and requires the URI of Germany:

PREFIX org: <https://www.w3.org/ns/org#>
PREFIX gn: <http://www.geonames.org/ontology#>

3 See http://www.geonames.org/ontology/documentation.html

http://www.geonames.org/ontology/documentation.html
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PREFIX : <https://solid.iis.fraunhofer.de/e-40200/2024/10/
velektronik-graph-clean/region/wdQ183.ttl#>

SELECT ?x WHERE {
?x org:hasRegisteredSite _:y .
_:y gn:parentFeature+ :this . }

Discovering the required relation in the KG is easier if (i) the Describe action
on Germany returns incoming triples to detect subordinate regions linked from
an org:Organization and (ii) the Describe action on gn:Feature returns the
subclass alignment with org:Site. Adding the property gn:locatedIn could
link Germany directly from an organization. To find the class org:Organization
and understand that a company is an organization, a comment for the class could
add the description.

Other important patterns in the KG are Keyfigure and Supply, both of which
represent n-ary relations. In the Keyfigure pattern (Figure 1b), the qb:Observation
class from the Data Cube Vocabulary [4] expresses key figures (operating income
as example) of organizations. In the Supply pattern (Figure 1c), the sn:SupplyFlow
class from the Abstraction Independent Supply Network Ontology4 expresses a
supply relation between organizations.

4 Considered Representation Variants

We identify subsets, modeling, and annotations as dimensions of KG representa-
tions. As the foundation, we consider Concise Bounded Descriptions (CBD) [19]
for subsets, the RDFS/OWL [2,9] features class, object and datatype property,
subclass, subproperty, and property characteristics besides ’inverse’ for mod-
eling, and rdfs:label for annotations. Subdimensions that introduce alter-
ations include, but are not limited to:

– Subsets
• Entity boundaries like CBD define the triples returned when describ-

ing or dereferencing an entity.
• Domain subsets include triples that belong to a certain domain.

– Modeling
• Inverse properties link two entities in opposing direction.
• Shortcut properties represent a property path to directly link two

entities.
• Ontology Design Patterns are distinguishable patterns independent

of an ontology that express an established relation.
• Ontology reuse and alignment focus on combining terms from several

ontologies in one KG while maintaining semantics.
• Upper ontologies introduce classes on a high abstraction to support

applied ontologies with fundamental semantics.
• SKOS concepts offer a hierarchical classification different from classes.

4 See https://purl.org/supply-network/onto#

https://purl.org/supply-network/onto#
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• Shapes express ontologies alternatively or supplementary to OWL.
– Annotations

• Comments are human-readable descriptions of an entity.
• Alternative labels express synonyms or abbreviations.
• Examples show example uses.

This paper focuses on the four subdimensions highlighted in italics, for which
we discuss possible variants in the Sections 4.1 to 4.4 and conduct experiments
to test our hypothesis.

4.1 Entity Boundaries

Entity boundaries refer to a method of extracting a limited set of triples about
a specific entity within the KG. Several ways exist: The CBD algorithm [19]
includes the outgoing triples of an entity while recursively including the outgo-
ing triples of encountered blank nodes. Alternatively, all neighboring triples of
an entity can be retrieved [20], potentially selected by semantic relevance [21].
Wikidata’s Linked Data Interface5 returns outgoing triples of an entity with
additional statements according to Wikidata’s data model and property infor-
mation. The returned triples are verbose but may be filtered using the LLM and
a dedicated prompt [13].

Variants. Outgoing triples of a subject are the default variant for our ex-
periments, which aligns with CBD because we do not consider blank nodes.

We retrieve the entire neighborhood as another variant by adding incoming
triples. The consideration of encountered (potentially nested) blank nodes when
retrieving the neighborhood is an open question out of the scope of this paper.

Furthermore, we introduce specific class and object property boundaries. Be-
sides outgoing triples, the specific boundaries include selected triples regarding
subclasses/subproperties, domain, and range. The motivation is (i) to reduce
the number of returned triples without losing valuable information and (ii) to
add valuable information (classes in domain and range, types, and labels) out-
side of the neighborhood. For SPARQL queries for the specific boundaries, see
Appendix B and C.

Examples. When describing a gn:Feature instance (e.g., Germany) in the
geo pattern, the returned triples do not contain the backwards traversable links
to discover a related org:Organization instance. To find the link, the agent
must describe the org:Organization to follow the outgoing triples.

The classes qb:Observation and sn:SupplyFlow express n-ary relations.
The choice of outgoing triples for an n-ary relation without any single individual
standing out as the subject of the relation follows a W3C Working Group Note
[16]. Consequently, instances of these classes can never be discovered with default
entity boundaries.

Describing the class gn:Feature returns no information on the org:Site
subclass nor on the properties that have gn:Feature as domain or range.
5 See https://www.wikidata.org/wiki/Wikidata:Data_access

https://www.wikidata.org/wiki/Wikidata:Data_access
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4.2 Inverse Properties

An inverse property inverts the relation of a property and links two entities in
the opposing direction [9]. The information represented by two properties inverse
of each other is redundant [15]. Yet, materializing both triples adds explicit
information, potentially making it easier for an LLM to grasp a pattern.

The addition of inverse properties also covers some of the effects that ex-
tended (i.e., neighborhood or specific) entity boundaries have because either an
inverse property or incoming triples add a reverse link to retrieved data.

But unlike entity boundaries, properties are present in all KGQA agent ac-
tions: The Search action has more options to match the keyword, the Describe
action returns more triples that can be understood, and the Query action has
two inverse alternatives for each triple pattern.

Variants. For the experiments, we assume no inverse properties as the de-
fault. As an alternative variant, we define inverse properties for all object proper-
ties in the ontology, which is a baseline approach. We leave sophisticated variants
with selected inverse properties to future work. Table 1 shows the inverse prop-
erties for the highlighted patterns.

Examples. In the highlighted patterns, inverse properties ensure that all
information is reachable when traversing the data with Describe actions.

Table 1: Inverse properties for the patterns from Figure 1.
Inverse property Default property
org:siteOf org:hasSite
:registeredSiteOf org:hasRegisteredSite
:childFeature gn:parentFeature
:featureCodeOf gn:featureCode
:enterpriseObservation :observedEnterprise
:outgoingSupplyFlow esn:supplier
:incomingSupplyFlow esn:customer

4.3 Shortcut Properties

A shortcut property is a single property that represents a property path [7,14].
Relations between entities that are not linked directly are less obvious to

discover and understand. N-ary relations relate multiple entities through a ded-
icated entity [16]. As a consequence, two entities that are part of the n-ary
relation are not directly linked. An additional shortcut property that links the
two directly expresses their binary relation more explicitly.

Similarly, a shortcut property can explicitly express the relation to a specific
entity in a chain of transitive properties. For this scenario, OWL supports the
definition of a property through a property chain [9]. However, property chains
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are a list of properties with fixed length and no reverse properties. Property
paths in SPARQL [8] support both and more.

Shortcut properties reduce the number of entities the agent needs to discover
and understand because a shortcut property allows to skip some of the modeling
if the skipped details are not required to answer the given question. Like inverse
properties, shortcut properties impact all KGQA agent actions.

Variants. For the experiments, we assume no shortcut properties as the
default. As an alternative variant, we add shortcut properties where they shorten
reoccurring property paths required in answers. The naive approach of adding
all possible shortcut properties is not sensible because it leads to properties
expressing extensive relations with dubious meaning. Table 2 shows the shortcut
properties for the highlighted patterns.

Examples. In the Geo pattern, the shortcut property gn:parentCountry
skips a path of transitive gn:parentFeature properties. Thus, the agent does
not have to grasp the transitivity. Additionally, the agent may understand that
gn:parentCountry points to a country and thus does not have to identify a coun-
try by label or by the gn:featureCode. The shortcut property gn:locatedIn
additionally takes the discovery and understanding that the location of an orga-
nization comes from its registered site out of the equation.

The shortcut properties :hasSupplier and :hasCustomer for the Supply
pattern abbreviate the path through the n-ary relation by directly linking suppli-
ers and customers. Thus, the agent does not have to understand sn:SupplyFlow.

Table 2: All shortcut properties.
Shortcut property Default property path (SPARQL syntax)
gn:parentCountry gn:parentFeature+
gn:locatedIn org:hasRegisteredSite/gn:parentFeature+
:hasSupplier ^esn:customer/esn:supplier
:hasCustomer ^esn:supplier/esn:customer

4.4 Comments

The rdfs:comment property expresses a human-readable description of an entity
to clarify the meaning [2]. The usage includes "prose documentation, examples,
test cases" [2, Section 3.7], making rdfs:comment a versatile property. Conse-
quently, the application of rdfs:comment greatly differs between ontologies.

Additional comments on classes and properties help to reduce the ambigu-
ity of the chosen terms. Comments can also increase the likelihood of matches
when searching entities. Therefore, the Search action of GvD includes both the
rdfs:label and rdfs:comment into the vector compared to the searched term.

Variants. For the experiments, we assume no comments as the default. As
an alternative variant, we add a rdfs:comment literal to all classes, properties,
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and individuals in the ontology. For newly defined terms in the ontology, we write
a comment that describes the term in the context of the ontology. If a reused
term has a comment in the original ontology, we use that comment regardless
of how well the comment fits the use case and selection of ontology terms. All
comments (and labels) are in English only.

Examples. In the highlighted patterns, comments might reduce ambiguity
for the KGQA agent. For example, the meaning of the class gn:Code is not clear
without a description. The direction of the properties esn:supplier and esn:
customer is ambiguous as they lack a suffix ("hasSupplier" or "supplierOf").

5 Experimental Setup

5.1 Agent
We use an LLM-based agent called Graf von Data (GvD)6 that has three actions
at its disposal, which return information from the knowledge graph: a list of
URIs for a keyword (Search), a subgraph for a URI (Describe), and a SPARQL
result set for a SPARQL query (Query). The prompt for GvD is attached in
Appendix A. GvD is knowledge graph-agnostic, supports integrated data, and
requires no prior knowledge of the KG.

5.2 Language Model
We conduct all experiments with Llama 3.3 70B7 because it is open source and
performs well8 in instruction following, which is required for agent approaches.
Our empirical comparison of several LLMs for GvD confirms Llama 3.3 as a
strong choice. For our experiments, we set the temperature to 0 and top_p to
1. All experiments were conducted with the Llama 3.3 hosted at Chat AI [5].

5.3 Knowledge Graph
We evaluate variants of KG representation with a custom KG9. The KG de-
scribes enterprises in the semiconductor industry, their sites, and the supply
relations between them. The KG integrates data from the Welektonik10 Wik-
ibase, Wikidata, DBLP, and Library of Congress. We modeled the data with a
custom ontology that reuses established design patterns and ontology terms but
also defines new terms when required. The KG contains 32,276 to 48,117 triples,
depending on the variant.

The KG differs from other KGs for KGQA evaluation (i) because it is un-
known to LLMs, (ii) in the integration of multiple data sources and ontologies,
and (iii) in the modeling, which includes n-ary relations.
6 Accessible at https://graf.ti.rw.fau.de/
7 See https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
8 See https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/

MODEL_CARD.md and https://t.co/6oQ7b3Yuzc
9 Available at https://github.com/Quarkse/kg-rep-llm-qa/tree/main/knowledgegraph

10 See https://welektronik.iis.fraunhofer.de/wiki/Main_Page

https://graf.ti.rw.fau.de/
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md
https://t.co/6oQ7b3Yuzc
https://github.com/Quarkse/kg-rep-llm-qa/tree/main/knowledgegraph
https://welektronik.iis.fraunhofer.de/wiki/Main_Page
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5.4 Corpus

Our evaluation corpus11 consists of 58 handcrafted question-query-pairs. Of
those, 14 contain the Geo pattern, 15 the Keyfigure pattern, and 11 the Supply
pattern. The remaining 18 contain none of the three patterns.

Each question-query-pair consists of a question in natural language and one
to four triple patterns of a (gold standard) SPARQL query that expresses the
correct answer in the KG. Each question requires one variable, which is always a
URI. Focusing on URIs allows the agent (i) to retrieve found results to questions
to represent them with added context and (ii) removes the problem of whether
attributes (the currency of the operating income) or dimensions (the accounting
year of the operating income) shall be included in the answers to the questions.

5.5 Evaluation Metrics

As evaluation metrics, we use the Exact Match (EM) and F1 scores. The EM
metric checks whether the result of the generated query completely matches the
result of the gold standard query in the corpus. The F1 metric considers both
how many entities in the results are also in the gold standard result and how
many of the entities in the gold standard result are in the results. We adopt the
generalization to not penalize additional variables retrieved by the queries [13].
We run all experiments five times and give the mean values.

6 Results and Discussion

Table 3 shows the 13 conducted experiments12 with resulting EM and F1 scores
for the entire corpus and the questions covering the three patterns from Figure 1.

Accross the Entire Corpus, the neighborhood as entity boundaries consid-
erably improves the scores (experiments 2 vs. 1 and 4 vs. 3). Extending class
and property boundaries with specific information improves the scores a little
(3 and 4 vs. 1 and 2). The combination of neighborhood triples for individuals
and specific information for classes and properties achieves the best scores.

For the following experiments (5 to 13), we consider the default (outgo-
ing/outgoing) and the best (neighborhood/specific) entity boundaries.

Adding inverse properties to the modeling considerably improves the scores
for default boundaries (5) but decreases scores for the extended boundaries (6).
Shortcut properties considerably improve the scores for both boundary variants
(7 and 8). The combination of inverse and shortcut properties further improves
scores (9 and 10), especially in combination with extended boundaries (10). The
latter achieves the highest EM (38.3%) and F1 (44.5%) scores on the entire cor-
pus. Thus, changing the KG representation for KGQA achieved an improvement
from the default’s EM score of 13.5% by 24.8pp/184% and the default’s F1 score
of 17.6% by 26.9pp/153%.
11 Available at https://github.com/Quarkse/kg-rep-llm-qa/tree/main/corpus
12 Available at https://github.com/Quarkse/kg-rep-llm-qa/tree/main/experiments

https://github.com/Quarkse/kg-rep-llm-qa/tree/main/corpus
https://github.com/Quarkse/kg-rep-llm-qa/tree/main/experiments
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Table 3: Experiment results. The highest scores are marked in bold.
Entity Boundaries Inverse

Prop-
erties

Shortcut
Proper-
ties

Com-
ments

Entire
Corpus

Geo
Pattern

Key-
figure
Pattern

Supply
Pattern

No. Individu-
als

Classes/
Properties

EM F1 EM F1 EM F1 EM F1

1 outgoing outgoing - - - 13.5 17.6 4.3 7.1 6.7 6.9 5.5 5.9
2 neighborh. neighborh. - - - 24.1 28.4 17.4 24.7 4.0 4.1 0.0 2.7
3 outgoing specific - - - 16.9 22.3 8.5 14.9 4.0 4.0 1.8 11.4
4 neighborh. specific - - - 27.3 31.7 21.4 29.5 5.4 5.4 1.8 3.6
5 outgoing outgoing X - - 20.1 25.3 17.2 19.3 5.3 6.1 9.1 9.4
6 neighborh. specific X - - 23.1 25.3 8.6 10.7 2.7 3.7 1.8 2.9
7 outgoing outgoing - X - 24.8 31.8 30.0 39.6 4.0 4.5 27.3 31.8
8 neighborh. specific - X - 32.8 40.2 45.7 59.4 4.0 4.2 16.4 25.9
9 outgoing outgoing X X - 26.0 32.3 27.2 39.1 0.0 0.2 23.7 26.0

10 neighborh. specific X X - 38.3 44.5 50.0 58.3 2.7 3.6 34.6 39.2
11 outgoing outgoing - - X 13.4 17.6 2.9 5.9 1.3 3.9 1.8 3.0
12 neighborh. specific - - X 20.4 24.8 21.4 25.6 0.0 1.9 1.8 7.9
13 neighborh. specific X X X 34.1 40.9 40.0 53.4 4.0 4.0 23.7 33.5

Adding comments to the default variant has no impact on the scores (11),
and to other variants (12 and including the best in 13) lowers the scores.

Potential reasons for decreasing scores despite adding information to the KG
representation are (i) a longer prompt, (ii) the inclusion of more irrelevant infor-
mation, and (iii) the Search action being congested by the comments. All three
could lead to the LLM having a harder time identifying the relevant information.

Results for the (transitive) Geo pattern follow the trends of the entire corpus,
but specifically profit from shortcut properties (7 to 10). The highest F1 score
of 59.4% is achieved with shortcut but without inverse properties, improving on
the default by 52.3pp/739%, outperforming the entire corpus (8).

Results for the (n-ary) Keyfigure pattern show no improvement in any
variant and the scores remain on a low level or decrease. Seemingly, the LLM
fails to understand the pattern across all considered variants.

Results for the (n-ary) Supply pattern show scores mostly improving with
shortcut properties (7 to 10). The best variant aligns with the entire corpus with
an F1 score of 39.2%, improving on the default by 33.3pp/567% (10).

The results indicate that LLM-augmented KGQA struggles with n-ary rela-
tions in comparison to binary relations.

7 Conclusion

The paper provides insight into LLM-augmented KGQA, for which we formu-
lated the hypothesis that different KG representations impact the F1 score. The
experiments on several variants of KG representation confirm the hypotheses.
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Adding inverse and shortcut properties in combination with extended entity
boundaries improved the F1 score by 26.9pp/153% to 44.5%.

Future work may consider (i) more variants, (ii) additional subdimensions
(iii) questions requiring multiple variables, (iv) other KGQA approaches, and
(v) different LLMs.

Additionally, a comparison of runtimes, numbers of tokens, and, consequently,
costs of LLM reasoning could uncover drawbacks of different KG representations.
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A Graf von Data Prompt

Task
You are Graf von Data, an assistant designed to formulate a query based on
input from User.

Process
You interact with a knowledge graph in a strict think-act-observe cycle.
1. Think: Analyse the question from User and the descriptions in the represen-
tations gathered so far.
2. Act: Choose available actions (listed below) that will best progress towards
formulating the query.
3. Observe: HALT. System will provide the result of your chosen actions in the
next cycle.
In your response, start with a ‘Think:‘ section followed by an ‘Act:‘ section.

Actions
You can issue one or multiple of the following actions.
* ‘search(keywords: string)‘: Get URIs to resources matching the given ‘key-
words‘. Look for URIs that identify entities, i.e., make two calls: ‘search(’foo’)‘
and ‘search(’bar’)‘ instead of ‘search(’foo bar’)‘.
* ‘deref(resource URI: string)‘: Get all triples with ‘resource URI‘ in subject
position. Expand (https://www.w3.org/TR/curie)[Compact URIs] to absolute
URIs for use with ‘deref()‘.
* ‘query(sparql: string)‘: Evaluate ‘sparql‘ and get solutions. Consider using path
expressions, i.e., ‘*‘ or ‘+‘ for paths of transitive properties and ‘|‘ for alternative
paths.
You issue run actions concurrently using ‘|‘, e.g., ‘search(’foo’) | search(’bar’)‘.
Format action calls as follows: ‘Act: describe(’http://foo/bar’)‘ or ‘Act: query(’PRE-
FIX : <#> SELECT DISTINCT ?x WHERE ... ’)‘.
Use quotes for arguments.

Chat
Sometimes User does not seek factual information.
* ‘chat(text: string)‘: Issue a ‘chat()‘ action if User does not seek factual infor-
mation from the knowledge graph.

Conditions
Once you have come up with the final query, check the query via ‘query()‘ and
then end.
* ‘success(text: string)‘: Confirm the query as final and optionally give User
a concise message explaining the relevant steps you took. Do not mention the
query or the query solutions.
If nearing about ten cycles:
* ‘fail(text: string)‘: You have no other choice than to give up. Optionally report
to User the relevant steps you tried.

Stages
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* Identify key resources in the User question and find URIs via ‘Act: search()‘.
* Next, dereference key resources via ‘Act: deref()‘. Iteratively expand your
knowledge about the graph via ‘Act: deref()‘ to gather information required to
construct the query. Consider obtaining information about classes and properties
via ‘Act: deref()‘, especially domain and range of properties. Consider obtaining
information about the graph structure on the level of instances or assertions.
* Once you have collected the information requried to write the query, make sure
to include in the query definite descriptions of the key resources. Then, expand
the query iteratively with more triple patterns.

Critical Instructions
* Ensure that all URIs used in the query exist in the knowledge graph.
* Only use URIs that have been previously mentioned or discovered via ‘search()‘
or ‘deref()‘.
* Never repeat successfully executed actions, the results will be the same.

B Specific Class Boundaries SPARQL Query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

CONSTRUCT {
# subclasses, with type and label
?subclass rdfs:subClassOf <{uri}> .
?subclass ?p6 ?o6 .

# parent classes, with type and label
<{uri}> rdfs:subClassOf ?parent_class .
?parent_class ?p4 ?o4 .

# properties having the specified class as domain or range,
with type, label, domain, and range
?property ?p <{uri}> .
?property ?p2 ?o2 .
# classes in domain or range of such properties, with type and
label

?o2 rdfs:label ?o5 .
?o2 rdf:type ?o6 .

}
WHERE {

{
# subclasses, with type and label
?subclass rdfs:subClassOf <{uri}> .
OPTIONAL {

?subclass ?p6 ?o6 .
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FILTER (?p6 = rdf:type || ?p6 = rdfs:label)
}

} UNION {
# parent classes, with type and label
<{uri}> rdfs:subClassOf ?parent_class .
OPTIONAL {

?parent_class ?p4 ?o4 .
FILTER (?p4 = rdf:type || ?p4 = rdfs:label)

}
} UNION {

# properties having the specified class as domain or range
, with type, label, domain, and range

# classes in domain or range of such properties, with type
and label

?property ?p <{uri}> .
?property ?p2 ?o2 .
FILTER (?p = rdfs:domain || ?p = rdfs:range)
FILTER (?p2 = rdf:type || ?p2 = rdfs:domain || ?p2 = rdfs:

range || ?p2 = rdfs:label)
OPTIONAL {

?o2 rdfs:label ?o5 .
?o2 rdf:type ?o6 .

}
}

}

C Specific Object Property Boundaries SPARQL Query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

CONSTRUCT {
# classes in domain or range of the specified property, with
type and label
<{uri}> ?p7 ?o7 .
?o7 ?p8 ?o8 .

# subproperties, with type, label, domain, and range
?subproperty rdfs:subPropertyOf <{uri}> .
?subproperty ?p5 ?o5 .
# classes in domain or range of such properties, with type and
label

?o5 ?p6 ?o6 .
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# parent properties, with type, label, domain, and range
<{uri}> rdfs:subPropertyOf ?parent_property .
?parent_property ?p1 ?o1 .
# classes in domain or range of such properties, with type and
label

?o1 ?p3 ?o3 .
}
WHERE {

{
# classes in domain or range of the specified property,

with type and label
<{uri}> ?p7 ?o7 .
FILTER (?p7 = rdfs:domain || ?p7 = rdfs:range)
OPTIONAL {

?o7 ?p8 ?o8 .
FILTER (?p8 = rdf:type || ?p8 = rdfs:label)

}
} UNION {

# subproperties, with type, label, domain, and range
# classes in domain or range of such properties, with type

and label
?subproperty rdfs:subPropertyOf <{uri}> .
?subproperty ?p5 ?o5 .
FILTER (?p5 = rdf:type || ?p5 = rdfs:domain || ?p5 = rdfs:

range || ?p5 = rdfs:label)
OPTIONAL {

?o5 ?p6 ?o6 .
FILTER (?p6 = rdf:type || ?p6 = rdfs:label)

}
} UNION {

# parent properties, with type, label, domain, and range
# classes in domain or range of such properties, with type

and label
<{uri}> rdfs:subPropertyOf ?parent_property .
?parent_property ?p1 ?o1 .
FILTER (?p1 = rdf:type || ?p1 = rdfs:domain || ?p1 = rdfs:

range || ?p1 = rdfs:label)
OPTIONAL {

?o1 ?p3 ?o3 .
FILTER (?p3 = rdf:type || ?p3 = rdfs:label)

}
}

}
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