
WoT2Pod: An Architecture enabling an Edge-to-Cloud Continuum
Michael Freund

Fraunhofer Institute for Integrated
Circuits IIS

Nürnberg, Germany
michael.freund@iis.fraunhofer.de

Justus Fries
Fraunhofer Institute for Integrated

Circuits IIS
Nürnberg, Germany

justus.fries@iis.fraunhofer.de

Rene Dorsch
Fraunhofer Institute for Integraded

Circuits IIS
Nürnberg, Germany

rene.dorsch@iis.fraunhofer.de

Peter Schiller
Friedrich-Alexander-Universität

Erlangen-Nürnberg
Nürnberg, Germany

Andreas Harth
Fraunhofer Institute for Integrated

Circuits IIS
Nürnberg, Germany

ABSTRACT
We present WoT2Pod, an architecture that provides a uniform API
for data access and control of IoT devices at the edge and in the
cloud, creating a seamless continuum between these environments.
The uniform API is based on Resource Description Framework
(RDF) graphs, Linked Data Platform (LDP) containers, and HTTP.
The API is created by a middleware that uses the Web of Things to
interact with devices, maps collected IoT data to RDF, provides the
most recent data at the edge, and stores data for long-term storage
and sharing with third parties in a Solid Pod in the cloud layer.
We establish a formalism and derive equations for predicting la-
tency, and use them to evaluate different polling and pushing-based
methods for exchanging data between components. Our results
underscore that interactions at the edge are consistently faster than
those in the cloud, with data access 65% faster and device control
70% faster. We found that a strategy that relies entirely on pushing
data provides the most optimal latency results.

CCS CONCEPTS
• Computer systems organization→ Architectures; Sensors
and actuators; • Information systems → Semantic web de-
scription languages.

KEYWORDS
Internet of Things, Web of Things, Solid Project, Architecture

ACM Reference Format:
Michael Freund, Justus Fries, Rene Dorsch, Peter Schiller, and Andreas Harth.
2023. WoT2Pod: An Architecture enabling an Edge-to-Cloud Continuum. In
The International Conference on the Internet of Things (IoT 2023), November
07–10, 2023, Nagoya, Japan. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3627050.3627063

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.

IoT 2023, November 07–10, 2023, Nagoya, Japan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0854-1/23/11.
https://doi.org/10.1145/3627050.3627063

1 INTRODUCTION
Different types of applications dealing with Internet of Things (IoT)
devices and the data they generate have different requirements.
Latency-sensitive applications that implement feedback loops re-
quire near real-time access to current data and the ability to quickly
send control commands to selected devices. These requirements
necessitate processing at the network edge due to its proximity
to IoT devices [11]. In contrast, data-intensive applications that
support high-level business decisions and process orchestration
through long-term data analysis or machine learning tasks require
access to significant amounts of historical data, typically stored in
the cloud for scalability and ease of access [6].

Meeting these application requirements presents challenges.
First, the heterogeneity of IoT devices, with each device poten-

tially using different IP-based or non-IP-based connectivity stan-
dards and communication protocols, complicates direct access to
measurement data and control of the devices [19]. The Web of
Things (WoT) architecture introduced by the World Wide Web
Consortium (W3C) aims to alleviate this challenge by serving as a
metamodel for describing existing interfaces [15] of Things with a
Thing Description (TD) [16], enabling seamless communication.

Second, managing IoT data is challenging due to its multi-source
nature, heterogeneity, and weak semantics [4]. Efficient manage-
ment of such data often requires the use of data fusion techniques
and metadata enrichment to facilitate future queries [23]. It is also
necessary to ensure the long-term storage of data and to provide
secure, privacy-preserving methods of data sharing [3]. The Social
Linked Data (Solid) project [22], which provides a decentralized
approach to managing self-describing data on the Web in so-called
Pods, offers a promising solution for long-term data storage and
secure data sharing.

Finally, the APIs used to access data in the cloud are often dif-
ferent from those used at the edge and from those used to control
devices. This requires the implementation and use of different in-
teraction algorithms in applications depending on the operation
being performed.

These challenges make IoT application development complex,
as applications must deal with different device protocols, process
heterogeneous data with weak semantics, and adapt to different
cloud and edge APIs for data access and device control. The lack
of a unified approach that addresses all these challenges increases
the application development effort. While initiatives such as the

https://orcid.org/0000-0003-1601-9331
https://orcid.org/0000-0003-3433-7245
https://orcid.org/0000-0001-6857-7314
https://orcid.org/
https://orcid.org/0000-0002-0702-510X
https://doi.org/10.1145/3627050.3627063
https://doi.org/10.1145/3627050.3627063
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3627050.3627063


IoT 2023, November 07–10, 2023, Nagoya, Japan Michael Freund, Justus Fries, Rene Dorsch, Peter Schiller, and Andreas Harth

Solid project and the Web of Things (WoT) provide pieces of the
solution, a more comprehensive approach is essential. This is where
the potential of a distributed edge middleware solution that uses
the strengths of existing initiatives can become relevant.

Using the WoT abstraction model, the middleware can map vari-
ous IP-based and non-IP-based communication standards and pro-
tocols to the more universal framework of IP and HTTP [8, 17]. In
addition, a middleware can standardize the various data encodings
used by IoT devices into a self-describing data format. This enables
the creation of an API at the edge that standardizes data access and
device interaction with HTTP, and simplifies data management
and interpretation with a self-describing data format. In addition,
the middleware can send data to Solid Pods to enable secure data
sharing with third parties and long-term analytics. This allows the
middleware to generate a uniform API structure both at the edge
and in the cloud, creating a seamless edge-to-cloud API continuum.

Such a middleware approach shifts complexity - e.g., standard-
ization of data encoding and harmonization of protocols - from
application development to infrastructure. This shift can increase
initial design complexity and extend deployment time. However, by
introducing guidelines and best practices in the form of an architec-
ture and by evaluating the potential advantages and disadvantages
of different data exchange strategies, the initial deployment time
can be reduced again.

In this work, we propose such an architecture, called WoT2Pod,
which consists of a decentralized edge middleware that uses Seman-
tic Web technologies to combine the interoperable device interactiv-
ity of WoT with the storage and sharing aspects of the Solid project.
The middleware is driven by an algorithm that generates a unified
Linked Data Platform (LDP) and HTTP-based API that provides
Resource Description Framework (RDF) data both at the edge and
in the cloud. The middleware consists of three components: an
edge orchestrator, mediators, and intermediaries. The orchestrator
not only manages WoT2Pod’s setup and teardown processes, but
also autonomously discovers devices based on their semantic API
descriptions. In addition, the orchestrator creates a mediator and
an intermediary for each device it finds. Each mediator periodically
collects all available data from the corresponding IoT device, maps
this data in RDF format, makes a small amount of the most recent
data accessible via HTTP at the edge, and transfers the data to a
Solid Pod in the cloud for long-term storage if needed. The inter-
mediary’s role is to pass control commands from the Solid Pod to
the Mediator.
The key contributions of our work are:
• Amiddleware architecture that leverages SemanticWeb tech-
nologies to connect the Web of Things and the Solid project
and create a unified API for the edge and the cloud.
• An algorithm that maps device data to RDF and creates a
URI structure for APIs based on relationships that reflect the
device hierarchy.
• A formalism and equations for estimating the latency of dif-
ferent data exchange strategies and, based on this, a latency
comparison of the strategies. We also demonstrate the practi-
cal applicability of our work with a deployment in an airport
baggage handling system.

Photoelectric
Sensor

Mediator 1

Bluetooth/GATT
Binary
IP/HTTP

Cloud Layer

JSON

Mediator 2

Solid Pod Cloud

HTTP RDF

Applications

Applications
Edge

Camera
Controller

Event: 
- sensor triggered

Action:
- image capture
- calibration

Edge Layer

Device Layer

Figure 1: WoT2Pod provides a uniform HTTP and RDF based
API for accessing data at the edge and in the cloud.

2 EXAMPLE SCENARIO
An airport wants to improve transparency of its baggage handling
by collecting data on baggage size and color. The airport deploys a
camera system consisting of RGB-D stereo vision cameras managed
by a composite camera controller that provides binary data over
HTTP. A photoelectric sensor, which sends data in JSON format, is
connected via Bluetooth Low Energy (LE) and serves as the trigger
for this IoT system. The camera controller and the photoelectric
sensor are both described by a Thing Description.

The camera controller has an action for depth sensor calibration
with no output and an action for image capture triggering, which
provides a 3D point cloud from the merged camera images. The
sensor is designed to emit trigger events when baggage interrupts
its light beam.

The airport’s IT department employs WoT2Pod to facilitate ap-
plication development, as seen in Figure 1. WoT2Pod provides a
uniform API across both the edge and the cloud, enabling control
over Things and access to Thing data in RDF format.

Using WoT2Pod’s uniform API, the airport develops an edge-
based control application that creates a feedback loop. This ap-
plication interfaces with the mediator of the photoelectric sensor
using HTTP and RDF to determine if baggage triggers the sensor.
When the sensor is activated, the application sends an RDF graph
via HTTP to the camera controller’s mediator, which triggers the
camera controller to simultaneously capture images, enabling the
application to control and orchestrate Things in near real-time.

In parallel, a separate cloud-based application processes the an-
notated data in the Pod, using HTTP and RDF to access and analyze
the 3D point clouds to determine the size and color of the trans-
ported luggage. The results are stored back into the Pod as new RDF
triples, illustrating howWoT2Pod enables intensive data processing
tasks in the cloud.

Finally, an edge-based visualization application is deployed. The
application uses HTTP and RDF to access the latest images from
the edge, historical images from the cloud, and additional process
data from the internal KG to derive performance indicators and
provide image visualizations. This demonstrates WoT2Pod’s ability
to enable applications to access both near real-time and historical
data across the edge and cloud.



WoT2Pod: An Architecture enabling an Edge-to-Cloud Continuum IoT 2023, November 07–10, 2023, Nagoya, Japan

WoT2Pod facilitates the development of diverse applications,
enabling near real-time Thing control at the edge, supporting inten-
sive data processing in the cloud, and providing data access across
the edge and cloud. All these capabilities are delivered through a
uniform API that leverages LDP container structures to expose RDF
data over HTTP.

3 RELATEDWORK
Data in its raw, unprocessed form often has limited utility, but the
value is amplified when data is organized and structured. Wise et
al. [24] suggest to use Linked Data to improve findability, the HTTP
protocol for accessibility, ontologies and RDF for interoperability,
and provenance metadata to enhance data reusability. Our approach
builds on these strategies by mapping IoT data to RDF and using
the Solid project, which is based on Semantic Web technologies
and incorporates the LDP specification with added access control
for long-term storage. Solid has proven beneficial in various con-
texts, including government [12] and industrial applications [13].
Additionally, RDF has been recognized as a tool for integrating
diverse data sources [1] and serves as the foundational data model
for Knowledge Graphs (KGs) [14]. RDF data enables RDFS/OWL
based reasoning to infer implicit information [21] and also allows
the interconnection of multiple RDF data sources, such as KGs,
Linked Open Data, and Solid Pods using Web Linking [18], thereby
combining distributed data sources.

IoT platforms such as Home Assistant1 are widely used in home
automation. Home Assistant is primarily designed to operate in
local networks and allows the integration of various devices di-
rectly into its platform. This interaction is managed by special
plug-ins called integrations. For example, the Zigbee home automa-
tion integration allows communication with Zigbee compatible
devices. All data collected within Home Assistant is stored in a
relational database, and both device control and data retrieval are
available through an API based on JSON and HTTP. In contrast
to integrations, we use the WoT TD to interact with devices. The
TD is a standardized descriptor connecting devices to a broader
web ecosystem and treats them like web resources. Another distinc-
tion of WoT2Pod is that the API provides self-describing RDF data,
which provides a more semantically transparent perspective than
traditional JSON representations. By using Solid Pods in the cloud,
WoT2Pod also enables the storage of large amounts of data and the
secure sharing of collected data with authenticated third parties.

Noura et al. presented WoTDL2API [20], a tool designed to cre-
ate a RESTful API for devices using non-IP based communication,
allowing easier interaction with these devices. The devices must
be described using the WoTDL2API ontology. In contrast to this
approach, we rely on the standardized WoT abstraction to access
the devices. Furthermore, we map the collected data to RDF, which
allows applications to access all data and control all devices through
an API built on a single encoding (RDF) and protocol (HTTP).

Fries et al. [10] introduced an IoT architecture that integrates
WoT with Solid Pods. It includes an edge orchestrator that discov-
ers Things, transfers TDs, metadata, and RDF-mapped raw data
into LDP containers, and handles a task queue within the Pod. The

1https://www.home-assistant.io/

orchestrator manages properties and actions, but has no event sup-
port or data access at the edge. In contrast, we use edge mediators
to map Thing data to RDF, provide near real-time data access at the
edge, and support for properties, actions, and events.

4 DETAILED OVERVIEW OFWOT2POD
Our proposed WoT2Pod architecture spans three layers: the device
layer (subsection 4.1), the edge layer (subsection 4.2), and the cloud
layer (subsection 4.3). Both the edge and cloud layers provide a
uniform API for controlling Things and accessing data created by a
middleware at the edge. The APIs can be used by applications (sub-
section 4.4) deployed at the edge or in the cloud.

4.1 Device Layer
The device layer consists of sensors that collect data about the en-
vironment and actuators able to interact with the physical world.
The interaction affordances, relationships, and static data of these
embedded devices are described by a Thing Description. The TD
offers an abstraction for the embedded devices, converting them
into Things within the WoT context. There are two types of Things
in the device layer: standalone Things and composite Things. Stan-
dalone Things are unique entities that do not encapsulate nested
sub-Things. On the other hand, composite Things are formed by
aggregating multiple standalone Things or composite Things. Com-
posite Things control sub-Things, enabling them to perform more
complex tasks.

4.2 Edge Layer
The edge layer forms the middle layer of the WoT2Pod architecture,
consisting of our middleware that includes an edge orchestrator
and possibly multiple mediators and intermediaries.

4.2.1 Edge Orchestrator. The edge orchestrator is hosted at the
edge of the network and controls the setup and teardown process.
The edge orchestrator has write access to Pods, discovers Things,
and spawns mediators and intermediaries. Therefore, an edge or-
chestrator acts as both a client and a WoT Discoverer [5]. The
discovery mechanism employed by the edge orchestrator is tailored
to the specific use case and the constraints of the host machine.
For instance, it may be based on direct methods such as user input,
well-known URIs, DNS-based mechanisms [5], or link-following
approaches [9].

4.2.2 Intermediary. Intermediaries are straightforward client
software components designed to poll data from one server and
push it to another. In our approach, we employ these intermediaries
to either relay control commands from Pods in the cloud to media-
tors at the edge or to poll data from mediators and subsequently
push it to Pods.

4.2.3 Mediator. Mediators are implemented as servients and use
the WoT Scripting API2 to consume TDs. By using the Scripting
API, all already supported protocol bindings can be mapped to the
abstract Thing interaction model3, so that protocols like MQTT or
Bluetooth LE can be mapped to HTTP.

2https://www.w3.org/TR/wot-scripting-api/
3https://www.w3.org/TR/wot-binding-templates/

https://www.home-assistant.io/
https://www.w3.org/TR/wot-scripting-api/
https://www.w3.org/TR/wot-binding-templates/


IoT 2023, November 07–10, 2023, Nagoya, Japan Michael Freund, Justus Fries, Rene Dorsch, Peter Schiller, and Andreas Harth

Mediators perform three primary functions: collecting data from
readable properties or events, relaying write-property or invoke-
action operations to Things, and providing data access at the edge.

The mediator’s first function is to collect, annotate, and map data
to RDF, which may include provenance data, units, or other infor-
mation extracted from the TD. Various methods such as templates,
mapping tools, or reasoning can be used for the data mapping [2].
An example using SOSA/SSN4 to describe observations and PROV-
O5 for provenance data is provided in Listing 1.

The second function is related to Thing control. Here, the me-
diator expects applications to create a new resource, containing
control commands encoded as an RDF graph. This graph describes
the operation, any required input, the target Thing, and the action
to invoke, as illustrated in Listing 2.

In addition, the mediators provide access to a small amount of the
latest annotated RDF data, structured in LDP containers, over HTTP.
If the collected data requires long-term storage, the mediators can
transfer it to the cloud. For ease of access, the mediators’ API is
described by a dynamically generated OpenAPI description.

Listing 1: Filled-in RDF graph template describing an obser-
vation and provenance data.

1 @prefix sosa: <http ://www.w3.org/ns/sosa/> .
2 @prefix qudt: <http :// qudt.org/vocab/quantity#> .
3 @prefix unit: <http :// qudt.org/vocab/unit/> .
4 @prefix prov: <http ://www.w3.org/ns/prov#> .
5 @prefix : <http :// example.org#>.
6
7 :observation1 a sosa:Observation ;
8 sosa:hasResult :result1 ;
9 sosa:madeBySensor :sensor1 ;
10 prov:wasGeneratedBy :activity1 .
11
12 :result1 a qudt:QuantityValue ;
13 qudt:numericValue 25 ;
14 qudt:unit unit:DEG_C .
15
16 :sensor1 a sosa:Sensor ;
17 sosa:observes :temperature .
18
19 :activity1 a prov:Activity ;
20 prov:used :sensor1 ;
21 prov:generated :observation1 .

Listing 2: RDF graph to invoke action calibrate on sensor1.
1 @prefix rdfs:

<http :// www.w3.org /2000/01/rdf -schema#> .
2 @prefix : <http :// example.org#>.
3 @prefix ex: <http :// example.ontology.org#>.
4
5 [] a ex:actionInvocation ;
6 ex:forAction "calibrate" ;
7 ex:forThing :sensor1 ;
8 rdfs:label "Invoke calibration action" .

4https://www.w3.org/TR/vocab-ssn/
5https://www.w3.org/TR/prov-o/

4.3 Cloud Layer
The cloud layer hosts the Solid server, alongside the Pods used for
long-term data storage. Given the geographic distance separating
the Pods from the Things that generate the data, near real-time data
access is not feasible. However, owing to the cloud’s unrestricted
nature, the Pods can accommodate substantial volumes of historical
data and enable data sharing with other business units and external
enterprises through integrated functionalities in Solid. The stored
data in RDF format comprises annotated Thing data supplied by the
mediators as depicted in Listing 1. The Pod provides the annotated
data as RDF resources, organized in LDP containers, accessible via
an HTTP API. The access control list for each created LDP con-
tainer can be modified independently, enabling fine-grained access
control to the data and control commands off each Thing. Control
commands dispatched to the Pod are relayed to the corresponding
mediator through intermediaries.

4.4 Applications
Applications control Things, retrieve, process, and visualize data.
Applications may also be implemented as Solid Apps, programs
equipped with WebID authentication support6, which can pull,
process, and store shared data from Solid Pods.

Depending on the application’s needs, it can access different
RDF data sources, including current data from edge mediators and
historical data from Pods hosted in the cloud. To control Things,
applications send RDF graph commands to either the associated
mediator or the Pod. As a result, applications only need HTTP and
RDF compliance to manage all data sources and Things. The APIs
ensure consistent structure and uniform data encoding, simplifying
data access and device control, and eliminating the need for applica-
tions to change internal logic for different sources. Applications can
be deployed at the edge or in the cloud, enabling feedback loops,
data processing, and visualization depending on the use case.

4.5 Uniform API Algorithm
When an instance of the WoT2Pod architecture is initialized, the
edge orchestrator begins by attempting to discover all Thingswithin
the device layer. Following the identification, the edge orchestrator
initiates the creation of a LDP container structure within a Solid
Pod. The container structure mirrors the Thing hierarchy and is
created by parsing static semantic data contained within discovered
TDs. The semantic data could include meronym annotations or link
relation types.

For instance, the URIs for the LDP container structure can be
generated using Algorithm 1, which uses the SOSA/SSN proper-
ties - sosa:hosts and sosa:isHostedBy - to semantically denote
meronym relationships. The algorithm takes as input a base URI
string 𝐵 and a map 𝑀 . In 𝑀 , each Thing, identified by the index
i, has its unique URI 𝑢𝑟𝑖𝑖 as the key and the corresponding Thing
Description object 𝑡𝑑𝑖 as the value; the algorithm processes𝑀 to
produce a set of generated URIs,𝑈 .

The algorithm executes three primary steps:
(1) The algorithm creates a tree structure by initiating TreeNode

instances for each key-value pair in 𝑀 , associating each

6https://solid.github.io/webid-profile/

https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/prov-o/
https://solid.github.io/webid-profile/


WoT2Pod: An Architecture enabling an Edge-to-Cloud Continuum IoT 2023, November 07–10, 2023, Nagoya, Japan

TreeNode with the URI 𝑢𝑟𝑖𝑖 and its corresponding TD 𝑡𝑑𝑖 .
These TreeNodes form the backbone of our Thing hierarchy
representation (lines 4 - 7).

(2) The algorithm establishes the tree’s hierarchy by setting up
parent-child relationships between TreeNodes, guided by
the sosa:hosts and sosa:isHostedBy properties within
the TDs (lines 8 - 22).

(3) Finally, the algorithm generates unique URIs for each TreeN-
ode by traversing the tree and augmenting the URI of each
parent node with the title property and the affordance
name contained in the associated TD, mirroring the node’s
position within the tree’s hierarchy (line 23, but function not
depicted in Algorithm 1).

The output set𝑈 contains the URIs for all LDP containers and
LDP resources which need to be materializes within the Pod by the
edge orchestrator. To make the algorithm more tangible, we have
provided an example implementation in JavaScript7.

Once the LDP container structure is set up in the Pod through
the algorithm, the edge orchestrator starts spawning intermediaries
and mediators for each device. Each edge mediator also employs
this algorithm to construct its local API, making the algorithm
crucial in forming an edge-to-cloud data continuum with uniform
APIs for data access and Thing control.

Algorithm 1 Uniform API Algorithm

1: function generateUniformAPI(M, B)
2: 𝑡𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠 ← {}
3: 𝑟𝑜𝑜𝑡𝑁𝑜𝑑𝑒𝑠 ← []
4: for each 𝑢𝑟𝑖 in𝑀 do
5: 𝑇𝑁𝑜𝑑𝑒 ← new TreeNode(𝑢𝑟𝑖, 𝑀 [𝑢𝑟𝑖])
6: 𝑡𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠 [𝑢𝑟𝑖] ← 𝑇𝑁𝑜𝑑𝑒

7: end for
8: for each 𝑢𝑟𝑖 in 𝑡𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠 do
9: 𝑇𝑁𝑜𝑑𝑒 ← 𝑡𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠 [𝑢𝑟𝑖]
10: 𝑢𝑟𝑖𝑠𝑂 𝑓𝐶ℎ𝑖𝑙𝑑𝑠 ←qeryTD(𝑇𝑁𝑜𝑑𝑒.𝑡𝑑, 'hosts')
11: for each 𝑢𝑟𝑖𝑂 𝑓𝐶ℎ𝑖𝑙𝑑 in 𝑢𝑟𝑖𝑠𝑂 𝑓𝐶ℎ𝑖𝑙𝑑𝑠 do
12: TNode.addChild(treeNodes[uriOfChild])
13: end for
14: 𝑢𝑟𝑖𝑠𝑂 𝑓 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 ←qeryTD(𝑇𝑁𝑜𝑑𝑒.𝑡𝑑, 'isHostedBy')
15: if length(urisOfParents) > 0 then
16: for each 𝑢𝑟𝑖𝑂 𝑓 𝑃𝑎𝑟𝑒𝑛𝑡 in 𝑢𝑟𝑖𝑠𝑂 𝑓 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 do
17: TNode.setParent(treeNodes[uriOfChild])
18: end for
19: else
20: push(rootNodes, TNode)
21: end if
22: end for
23: return createUris(rootNodes, B)
24: end function

5 EVALUATION
To evaluate the architecture, we first formulate equations to es-
timate the latency of the system (subsection 5.1). We then verify

7https://github.com/FreuMi/uriGeneration

Table 1: Symbols denoting end-to-end latency based on com-
ponent interaction and communication approach.

Symbol Meaning

𝐿𝑋⇌𝑌 Latency when X polls Y
𝐿𝑋⇋𝑌 Latency when Y polls X
𝐿𝑋⇀𝑌 Latency when X pushes to Y
𝐿𝑋↼𝑌 Latency when Y pushes to X

these equations through a simulation based on virtual Ethernet
connections, before proceeding to evaluate different data exchange
strategies using the equations (subsection 5.2).

We consider only HTTP 1.1 communication over wired connec-
tions, excluding other IoT communication standards like MQTT
or Bluetooth LE, and assume non-persistent HTTP connections,
requiring a new TCP connection for each data exchange, to estimate
performance under worst-case conditions.

5.1 Describing Latency
We introduce a formalism shown in Table 1 to describe the end-to-
end latency of the architecture in various scenarios. For example,
the latency when component X polls Y is denoted as 𝐿𝑋⇌𝑌 . More
complex scenarios, such as the latency between X and Z, with Y
polling X and pushing to Z, can be expressed as 𝐿𝑋⇋𝑌⇀𝑍 .

We now formulate equations to estimate the latency between
two components, 𝑋 and 𝑌 , depending on whether they use polling
or pushing-based communication.

As the communication between 𝑋 and 𝑌 is HTTP-based, a TCP
connection must be established before data exchange — regard-
less of whether the communication approach is based on polling
or pushing. The TCP connection is set up using the Three-Way
handshake [7], as illustrated in Figure 2a.

The handshake begins when X sends a SYN packet to Y. In re-
sponse, Y sends back a SYN-ACK packet. X then acknowledges with
an ACK packet, thereby establishing the TCP connection. Note that
X does not have to wait for the ACK packet to arrive at Y to establish
the TCP connection. The TCP teardown, which has no impact on
latency, is excluded from our consideration.

TCP packet processing times at both X and Y are below 0.2 ms
in our measurements. Since our focus is on estimating latency, we
consider these durations to be negligible. Thus, we approximate
the duration of a TCP handshake by a single round-trip time, rep-
resented as 𝑅𝑇𝑇𝑋𝑌 .

Once the TCP connection is established, X and Y can commu-
nicate using, for example, a polling-based HTTP interaction, i.e.,
𝐿𝑋⇌𝑌 . The exchanged packets and required processing times in a
polling-based scenario are depicted in Figure 2b. 𝑋 sends an HTTP
GET request to 𝑌 . 𝑌 processes the received request, needing time
𝑡𝑟𝑒𝑞 (𝑌 ) for the processing operation, and then responds with the
requested data. Upon receiving the data, 𝑋 must processes it, an
operation that takes time 𝑡𝑑𝑎𝑡𝑎 (𝑋 ) to finish. The times 𝑡𝑟𝑒𝑞 (𝑌 ) and
𝑡𝑑𝑎𝑡𝑎 (𝑋 ) are typically larger than 1 ms. Since latency is typically
measured in milliseconds, durations greater than 1 ms are signifi-
cant and cannot be considered negligible. Consequently, the total
time until data is available at𝑋 when using HTTP consits of 𝑅𝑇𝑇𝑋𝑌 ,

https://github.com/FreuMi/uriGeneration


IoT 2023, November 07–10, 2023, Nagoya, Japan Michael Freund, Justus Fries, Rene Dorsch, Peter Schiller, and Andreas Harth

Y

ACK

X

SYN
SYN, ACK

YX

HTTP GET

RETURN 200

treq(Y)

tdata(X)

a)

b)

c)

YX
HTTP POST

RETURN 200

tdata(Y)

Figure 2: UML component diagram illustrating a) TCP con-
nection establishment, b) HTTP polling-based, and c) push-
based data exchange.

𝑡𝑟𝑒𝑞 (𝑌 ) , and 𝑡𝑑𝑎𝑡𝑎 (𝑋 ) . The polling interval of𝑋 , represented as 𝑃𝐼𝑋 ,
also contributes to 𝐿𝑋⇌𝑌 . In a worst-case scenario, if the data is not
available during the first poll, 𝑋 has to wait for a complete polling
interval before sending the next request. Consequently, 𝐿𝑋⇌𝑌 can
be represented by equation 1, which takes into account both the
TCP handshake and the HTTP polling-based data exchange. Equa-
tion 1 is also applicable in the case of 𝐿𝑋⇋𝑌 , since it only requires
the exchange of X and Y positions and the inversion of the arrow
symbol, yielding 𝐿𝑌⇌𝑋 . All symbols used are defined in Table 2.

𝐿𝑋⇌𝑌 = 𝑅𝑇𝑇𝑋𝑌 + 𝑅𝑇𝑇𝑋𝑌 + 𝑡𝑟𝑒𝑞 (𝑌 ) + 𝑡𝑑𝑎𝑡𝑎 (𝑋 ) + 𝑃𝐼𝑋 (1)
= 2 · 𝑅𝑇𝑇𝑋𝑌 + 𝑡𝑟𝑒𝑞 (𝑌 ) + 𝑡𝑑𝑎𝑡𝑎 (𝑋 ) + 𝑃𝐼𝑋 (2)

When 𝑋 and 𝑌 exchange data using a push-based interaction, i.e.
𝐿𝑋⇀𝑌 , instead of a polling-based interaction, the HTTP packets
exchanged are slightly different, as shown in Figure 2c.

𝑋 initiates the data exchange by sending an HTTP POST request
to 𝑌 . Upon receipt, 𝑌 processes the incoming data, an operation
that takes 𝑡𝑑𝑎𝑡𝑎 (𝑌 ) to complete. Then 𝑌 sends a response back
to 𝑋 . Since the data is already at 𝑌 and there is no need to wait
for the response to reach 𝑋 , the response does not contribute to
latency. Therefore, in a scenario with symmetric latency between
𝑋 and 𝑌 , only half of 𝑅𝑇𝑇𝑋𝑌 needs to be considered. Consequently,
𝐿𝑋⇀𝑌 is described by equation 3, taking into account both the TCP
handshake and the HTTP request. Equation 3 can also be applied
in the case of 𝐿𝑋↼𝑌 , as it only requires the swapping of 𝑋 and 𝑌
and the inversion of the arrow, resulting in 𝐿𝑌⇀𝑋 .

𝐿𝑋⇀𝑌 = 𝑅𝑇𝑇𝑋𝑌 + 0.5 · 𝑅𝑇𝑇𝑋𝑌 + 𝑡𝑑𝑎𝑡𝑎 (𝑌 ) (3)
= 1.5 · 𝑅𝑇𝑇𝑋𝑌 + 𝑡𝑑𝑎𝑡𝑎 (𝑌 ) (4)

We can use the derived equations 2 and 4 to calculate the latency
of a combination of interactions, for instance 𝐿𝑋⇋𝑌⇀𝑍 . This can
be done by summing 𝐿𝑋⇋𝑌 and 𝐿𝑌⇀𝑍 . Once values are inserted
into equation 6, we can estimate the latency for this scenario.

𝐿𝑋⇋𝑌⇀𝑍 = 𝐿𝑋⇋𝑌 + 𝐿𝑌⇀𝑍 (5)
= 2 · 𝑅𝑇𝑇𝑋𝑌 + 0.5 · 𝑡𝑟𝑒𝑞 (𝑋 ) + 𝑡𝑑𝑎𝑡𝑎 (𝑌 ) + 𝑃𝐼𝑌
+ 1.5 · 𝑅𝑇𝑇𝑌𝑍 + 𝑡𝑑𝑎𝑡𝑎 (𝑍 )

(6)

We validate the derived equations for polling, pushing, and a
combination of multiple communication approaches using a simu-
lation based on virtual Ethernet connections and JavaScript code8.
All RTTs are set to 100 ms, while processing times are determined
by the runtime of the software used.

As shown in Figure 3, the deviation between the total measured
runtime and the value calculated by the equation is approximately
7 ms for 𝑋 ⇌ 𝑌 and 𝑋 ⇀ 𝑌 , and about 14 ms for 𝑋 ⇋ 𝑌 ⇀ 𝑍 . The
latter is expected, given that it combines the previous two scenarios.
Notably, these offsets remain constant even as latency increases.

The offset of 7 ms is due to the inaccuracy in measuring 𝑡𝑑𝑎𝑡𝑎
and 𝑡𝑟𝑒𝑞 . This is because the built-in HTTP module is compiled
into the node.js binary, which prevents timing measurements at
the lowest level. The total relative error between the equation and
the simulation is about 3%. Despite this small discrepancy, the
simulation confirms the correctness of our derived equations and
the accuracy of our models.

𝑋 ⇌ 𝑌 𝑋 ⇀ 𝑌 𝑋 ⇋ 𝑌 ⇀ 𝑍

200
300
400

Ti
m
e
[m

s] Equation
Simulation

Figure 3: Comparison between theoretical equations (blue)
and empirical simulation results (red) for a RTT of 100ms.

Table 2: Symbols denoting processing times, round trip times,
and polling intervals.

Symbol Meaning

𝑅𝑇𝑇𝑋𝑌 Round Trip Time between X and Y
𝑡𝑟𝑒𝑞 (𝑋 ) Time to process request at X
𝑡𝑑𝑎𝑡𝑎 (𝑋 ) Time to process received data at X
𝑃𝐼𝑋 Polling interval of X

Table 3: Symbols representing various components and their
implementation.

Symbol Meaning Implementation

𝑇 Thing Servient
𝑀 Mediator Servient
𝑃 Solid Pod Server
𝐼 Intermediary Client
𝐴 Application Client or Servient

5.2 Theoretical Latency Analysis of WoT2Pod
In this subsection we compare the latency in two scenarios using
the equations derived in the previous subsection. For the equations
8https://github.com/FreuMi/WoT2PodSim

https://github.com/FreuMi/WoT2PodSim


WoT2Pod: An Architecture enabling an Edge-to-Cloud Continuum IoT 2023, November 07–10, 2023, Nagoya, Japan

𝐿𝑇⇋𝑀⇋𝐴
𝐿𝑇⇋𝑀⇀𝐴

𝐿𝑇⇀𝑀⇋𝐴
𝐿𝑇⇀𝑀⇀𝐴

𝐿𝑇⇋𝑀⇋𝐼⇀𝑃⇋𝐴
𝐿𝑇⇋𝑀⇀𝑃⇋𝐴

𝐿𝑇⇀𝑀⇋𝐼⇀𝑃⇋𝐴

𝐿𝑇⇀𝑀⇀𝑃⇋𝐴

50
100
150

Ti
m
e
[m

s]

Figure 4: Data transfer time from Thing to application, depending on the interaction approach and whether the data is accessed
at the edge or in the cloud.

we use the formalism introduced in Table 1 in combination with
the symbols in Table 2 and Table 3. We consider the two following
scenarios: S1) Thing data to application, and S2) control commands
from application to Thing. Hereafter, we refer to the components
at the edge as mediators and the component in the cloud as Pod.
However, the latency equations generally apply to all components at
the edge or in the cloud and not only to the ones used in WoT2Pod.

5.2.1 Scenario S1: Thing Data to Application. Scenario 𝑆1 in-
cludes several variations based on the communication approaches
used. Things can provide data to mediators in two ways: as a read
property via polling, or as an event via pushing. Both approaches
can also be used to transfer data between the mediator and the Pod.
Because the Pod is implemented as a server, it lacks the ability to
poll on its own. Therefore, the Pod requires another intermediary
agent that can poll the mediator and push data to the Pod.

Applications can access data from either a mediator or a Pod. If
the application is implemented as a client, it can use polling to re-
trieve data. But, if the application is implemented as a servient, it has
the ability to receive data that is pushed. Notably, because the Pod
is implemented as a server, direct data pushing to the application
is not possible. Instead, an additional intermediary agent would be
required to facilitate data pushing from the Pod to the application.
We did not consider this approach because the additional interme-
diary would only add complexity without improving performance
or allow the separation of client and server implementations.

The application interacting with the mediator has four possible
variants 𝐿𝑇⇋𝑀⇋𝐴 , 𝐿𝑇⇋𝑀⇀𝐴 , 𝐿𝑇⇀𝑀⇋𝐴 , and 𝐿𝑇⇀𝑀⇀𝐴 .

The application interacting with the Pod has also four variants
𝐿𝑇⇋𝑀⇋𝐼⇀𝑃⇋𝐴 , 𝐿𝑇⇋𝑀⇀𝑃⇋𝐴 , 𝐿𝑇⇀𝑀⇋𝐼⇀𝑃⇋𝐴 , and 𝐿𝑇⇀𝑀⇀𝑃⇋𝐴 .
As mentioned above, the additional four variants in which the Pod
pushes data to the application are not included.

Figure 4 presents the latency of each variant, calculated using
hypothetical values. We have assumed that all processing times
(𝑡𝑑𝑎𝑡𝑎 and 𝑡𝑟𝑒𝑞) equal 5 ms, with polling intervals set at 10 ms. In
terms of latency, we assume that device-to-edge and edge-to-edge
latencies are 6ms. For edge-to-cloud or cloud-to-cloud latencies, we
reference the average provided by the FCC’s Measuring Broadband
America9 for cable connections, which stands at 17 ms. In our set-
up, applications, intermediaries, and mediators are deployed at the
edge, while the Pod is hosted within the cloud.

Figure 4 demonstrates the consistent speed advantage of data
access at the edge, with the worst-case scenario still being 65% faster
than the best case in the cloud. Furthermore, the figure emphasizes
the general superiority of push-based interaction over polling-based
9https://www.fcc.gov/general/measuring-broadband-america

𝐿𝑇↼𝑀↼𝐴 𝐿𝑇↼𝑀⇌𝑃↼𝐴 𝐿𝑇↼𝑀↼𝐼⇌𝑃↼𝐴

20
40
60
80
100
120

Ti
m
e
[m

s]

Figure 5: Control command transfer time from application to
Thing, depending on the interaction approach and whether
the command is sent to the edge or to the cloud.

interaction in terms of latency. This result was expected based on
the equations describing the interactions.

5.2.2 Scenario S2: Control Commands from Application to
Thing. Scenario 𝑆2 outlines the time to relay control commands
from applications to Things. Applications can either send com-
mands directly to edge mediators or to the the Pod in the cloud.
Communication is always push-based as both Thing and Pod are
implemented as servers.

Therefore, two combinations are possible if the application sends
control commands to the Pod: 𝐿𝑇↼𝑀⇌𝑃↼𝐴 and 𝐿𝑇↼𝑀↼𝐼⇌𝑃↼𝐴 .
There is also one other possible combination if the application sends
control commands directly to the mediator: 𝐿𝑇↼𝑀↼𝐴 .

Figure 5 presents the latency for each of the three variants, calcu-
lated using the values provided in 5.2.1. As depicted, sending control
commands directly to the edge is approximately 70% faster than
employing the quickest cloud variant. This outcome aligns with
our expectations, given that the RTT at the edge is significantly
shorter than the RTT to the cloud.

6 DEPLOYMENT
A real-world implementation was conducted at Munich Airport,
one of the largest airports in Europe. The airport already uses a
KG for data management and wants to gain more insight into its
baggage handling process using IoT devices, similar to the example
scenario described in this paper.

Our prototype is installed at a check-in counter and uses two
industrial PCs: one hosting an edge orchestrator and intermedi-
aries, and the other hosting mediators. The setup also includes a
Pod hosted on a Community Solid Server10 in the cloud. The pro-
totype features three Intel Realsense D435i stereo vision cameras
connected to a camera controller, along with a photoelectric sensor
managed by an Arduino. Both the Arduino and the camera con-
troller are described by TDs. The Things have associated mediators
10https://github.com/CommunitySolidServer/CommunitySolidServer

https://www.fcc.gov/general/measuring-broadband-america
https://github.com/CommunitySolidServer/CommunitySolidServer


IoT 2023, November 07–10, 2023, Nagoya, Japan Michael Freund, Justus Fries, Rene Dorsch, Peter Schiller, and Andreas Harth

that not only allow control of the Things using actions or write
properties, but also receive events, and poll read properties. The
mediators are configured to retain the last ten sensor data points
and images, as well as to push data for long-term storage to a Pod.

A control application operating at the edge implements a feed-
back loop, checks if luggage has triggered the sensor, and sends
an RDF graph describing the captureImages action to the camera
controller’s mediator to invoke the action to capture images. Ad-
ditionally, we deployed two cloud-operating applications used for
processing of data in the Pod. One application estimates luggage
dimensions using computer vision algorithms and depth images,
while the other application uses K-Means clustering to determine
the most predominant luggage colors from the RGB images.

We also deployed a web-based application that enables a process
expert to visualize historical image data stored in the Pod and the
near-real time images on mediators, along with existing process
data from the internal KG. The airport’s existing use of KGs facili-
tated the integration of the newly gathered process data stored in
the Pod, as all data is in RDF format and can be linked seamlessly.

The check-in counter processes about 2, 700 pieces of luggage
each day, and for every piece of luggage, the camera system pro-
duces six images: three color images and three depth images. Each
image is approximately 600 kilobytes in size, resulting in a total
daily data generation of around 9.7 gigabytes. The prototype sys-
tem has been in operation for a little over two months and has
accumulated a total of about 600 gigabytes.

7 CONCLUSION AND FUTUREWORK
This paper began by identifying three challenges that complicate the
development of IoT applications: the diverse nature of IoT devices,
the task of managing multi-source and semantically weak data, and
the disparate APIs used at different device, edge, and cloud layers.
In response, we proposed WoT2Pod, an architecture consisting of a
decentralized middleware that integrates theWeb of Things and the
Solid project using Semantic Web technologies. Wot2Pod enables
the creation of a uniform API based on HTTP, LDP and RDF at the
edge and the cloud. The middleware uses an algorithm to create this
uniform API and was deployed at an airport where we developed
three types of applications. The evaluation showed that latency can
vary depending on the combination of data exchange strategies
used (push or polling) and whether the data is accessed at the edge
or in the cloud. We found that access at the edge is faster than
access in the cloud in all cases, and that the push-only approach
is the fastest for getting data from things to applications and vice
versa. However, more research is needed to investigate how the
proposed architecture scales in larger installations.

Future work will focus on analyzing the scalability of the archi-
tecture, evaluating latency when using wireless communications
such as Bluetooth LE and other protocols, and improving applica-
tion composition. We are also looking to expand our real-world
deployments.

ACKNOWLEDGMENTS
This work was funded by the Bayerisches Verbundforschungspro-
gramm (BayVFP) des Freistaates Bayern through the KIWI project
(grant no. DIK0318/03).

REFERENCES
[1] Jakob Beetz and André Borrmann. 2018. Benefits and limitations of linked

data approaches for road modeling and data exchange. In Advanced Computing
Strategies for Engineering: 25th EG-ICE International Workshop 2018, Lausanne,
Switzerland, June 10-13, 2018, Proceedings, Part II 25. Springer, 245–261.

[2] Pieter Bonte and Femke Ongenae. 2023. Towards Cascading Reasoning for
Generic Edge Processing. (2023).

[3] John Byabazaire, Gregory O’Hare, and Declan Delaney. 2020. Using trust as
a measure to derive data quality in data shared IoT deployments. In 2020 29th
International Conference on Computer Communications and Networks (ICCCN).
IEEE, 1–9.

[4] Hongming Cai, Boyi Xu, Lihong Jiang, and Athanasios V Vasilakos. 2016. IoT-
based big data storage systems in cloud computing: perspectives and challenges.
IEEE Internet of Things Journal 4, 1 (2016), 75–87.

[5] Andrea Cimmino, Michael McCool, Farshid Tavakolizadeh, and Kunihiko
Toumura. 2023. Web of Things (WoT) Discovery. https://www.w3.org/TR/wot-
discovery/.

[6] Michele De Donno, Koen Tange, and Nicola Dragoni. 2019. Foundations and
evolution of modern computing paradigms: Cloud, iot, edge, and fog. Ieee Access
7 (2019), 150936–150948.

[7] Wesley Eddy. 2022. Transmission Control Protocol (TCP). RFC 9293. https:
//doi.org/10.17487/RFC9293

[8] Michael Freund, Rene Dorsch, and Andreas Harth. 2022. Applying the Web of
Things Abstraction to Bluetooth Low Energy Communication. arXiv preprint
arXiv:2211.12934 (2022).

[9] Michael Freund, Justus Fries, ThomasWehr, and Andreas Harth. 2023. Generating
Visual Programming Blocks based on Semantics in W3C Thing Descriptions.
(2023).

[10] Justus Fries, Michael Freund, and Andreas Harth. 2023. A Solid Architecture for
Machine Data Exchange with Access Control. (2023).

[11] Mian Guo, Lei Li, and Quansheng Guan. 2019. Energy-efficient and delay-
guaranteed workload allocation in IoT-edge-cloud computing systems. IEEE
Access 7 (2019), 78685–78697.

[12] Jonni Hanski, Pieter Heyvaert, Ben De Meester, Ruben Taelman, and Ruben
Verborgh. 2023. Distributed Social Benefit Allocation using Reasoning over
Personal Data in Solid. (2023).

[13] Daniel Henselmann, Karina Kolinsky, Sebastian Schmid, Daniel Schraudner,
Andreas Both, and Andreas Harth. 2022. Solid Proof of Concept in an Enterprise
Loan Request Use Case. (2022).

[14] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,
Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli,
Sebastian Neumaier, et al. 2021. Knowledge graphs. ACM Computing Surveys
(CSUR) 54, 4 (2021), 1–37.

[15] Michael Jacoby and Thomas Usländer. 2020. Digital twin and internet of
things—Current standards landscape. Applied Sciences 10, 18 (2020), 6519.

[16] Sebastian Kaebisch, Michael McCool, Ege Korkan, Takuki Kamiya, Victor Charp-
enay, and Matthias Kovatsch. 2023. Web of Things (WoT) Thing Description 1.1.
https://www.w3.org/TR/wot-thing-description/.

[17] Michael Lagally, Ryuichi Matsukura, Michael McCool, Kunihiko Toumura, Kazuo
Kajimoto, Toru Kawaguchi, and Matthias Kovatsch. 2023. Web of Things (WoT)
Architecture 1.1. https://www.w3.org/TR/wot-architecture/.

[18] Mark Nottingham. 2017. Web Linking. RFC 8288. https://doi.org/10.17487/
RFC8288

[19] Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. 2019. Interoper-
ability in internet of things: Taxonomies and open challenges. Mobile networks
and applications 24 (2019), 796–809.

[20] Mahda Noura, Sebastian Heil, and Martin Gaedke. 2019. Webifying heterogenous
internet of things devices. In Web Engineering: 19th International Conference,
ICWE 2019, Daejeon, South Korea, June 11–14, 2019, Proceedings 19. Springer,
509–513.

[21] Axel Polleres, Aidan Hogan, Renaud Delbru, and Jürgen Umbrich. 2013. RDFS
and OWL reasoning for linked data. In Reasoning Web International Summer
School. Springer, 91–149.

[22] Andrei Vlad Sambra, Essam Mansour, Sandro Hawke, Maged Zereba, Nicola
Greco, Abdurrahman Ghanem, Dmitri Zagidulin, Ashraf Aboulnaga, and Tim
Berners-Lee. 2016. Solid: a platform for decentralized social applications based on
linked data. MIT CSAIL & Qatar Computing Research Institute, Tech. Rep. (2016).

[23] Lidong Wang. 2017. Heterogeneous data and big data analytics. Automatic
Control and Information Sciences 3, 1 (2017), 8–15.

[24] John Wise, Alexandra Grebe de Barron, Andrea Splendiani, Beeta Balali-Mood,
Drashtti Vasant, Eric Little, Gaspare Mellino, Ian Harrow, Ian Smith, Jan Taubert,
et al. 2019. Implementation and relevance of FAIR data principles in biopharma-
ceutical R&D. Drug discovery today 24, 4 (2019), 933–938.

https://www.w3.org/TR/wot-discovery/
https://www.w3.org/TR/wot-discovery/
https://doi.org/10.17487/RFC9293
https://doi.org/10.17487/RFC9293
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-architecture/
https://doi.org/10.17487/RFC8288
https://doi.org/10.17487/RFC8288

	Abstract
	1 Introduction
	2 Example Scenario
	3 Related Work
	4 Detailed Overview of WoT2Pod
	4.1 Device Layer
	4.2 Edge Layer
	4.3 Cloud Layer
	4.4 Applications
	4.5 Uniform API Algorithm

	5 Evaluation
	5.1 Describing Latency
	5.2 Theoretical Latency Analysis of WoT2Pod

	6 Deployment
	7 Conclusion and future work
	Acknowledgments
	References

