
Enriching RDF Data with LLM based Named
Entity Recognition and Linking on Embedded

Natural Language Annotations

Michael Freund1[0000−0003−1601−9331], Rene Dorsch1[0000−0001−6857−7314],
Sebastian Schmid2[0000−0002−5836−3029], Thomas Wehr2[0000−0002−0678−5019],

and Andreas Harth1,2[0000−0002−0702−510X]

1 Fraunhofer Institute for Integrated Circuits IIS, Nürnberg, Germany
firstname.lastname@iis.fraunhofer.de

2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Nürnberg, Germany

Abstract. In this paper, we present a processing pipeline for transform-
ing natural language annotations in RDF graphs into machine-readable
and interoperable semantic annotations. The pipeline uses Named En-
tity Recognition (NER) and Entity Linking (EL) techniques based on a
foundational Large Language Model (LLM), combined with a Knowledge
Graph (KG) based knowledge injection approach for entity disambigua-
tion and self-verification. Through a running example in the paper, we
demonstrate that the pipeline can increase the number of semantic anno-
tations in an RDF graph derived from information contained in natural
language annotations. The evaluation of the proposed pipeline shows that
the LLM-based NER approach produces results comparable to those of
fine-tuned NER models. Furthermore, we show that the pipeline using a
chain-of-thought prompting style with factual information retrieved via
link traversal from an external KG achieves better entity disambiguation
and linking than both a pipeline without chain-of-thought prompting and
an approach relying only on information within the LLM.

Keywords: Natural Language Processing · KG enhanced LLM · RDF.

1 Introduction

Resource Description Framework (RDF) data is widely used in various domains
where semantic information and knowledge needs to be stored in an interopera-
ble and machine-readable format. For instance, in the Internet of Things (IoT)
domain, through the World Wide Web Consortium’s (W3C) Web of Things
(WoT) Architecture [4], where RDF is used to describe the capabilities and
APIs of sensors and actuators to create semantic interoperability [3]. Similarly,
in archaeology [17], where RDF is used to describe discovered historical objects
and their properties, such as where the objects were found and what materials
the objects are made of, to create a comprehensive and interoperable knowl-
edge base. RDF data typically consists of two parts: the main part, which is
machine-readable information based on formal ontologies, and a smaller part,

2 M. Freund et al.

which includes natural language annotations such as free-form text found in
labels and comments.

When RDF data is created by non-experts who are unfamiliar with rele-
vant ontologies and established RDF data modeling techniques, or by experts
who assume that the data will only be accessed by humans, they often anno-
tate some relevant information using solely natural language comments or labels
for simplicity. However, only ontology-based information is machine-readable
and interoperable. The information in natural language annotations embedded
within RDF data can still be highly relevant and valuable. But, the embedded
information often remains largely inaccessible to machines, due to the challenges
of processing natural language, and to humans when the annotations are in a
language they do not understand.

Recent advances in natural language processing (NLP) techniques, particu-
larly with foundational large language models (LLMs), have significantly pro-
gressed the field [10]. Unlike traditional Named Entity Recognition (NER) mod-
els, which rely on extensive labeled training data adapted to specific applica-
tion domains, large foundational LLMs can perform effectively without the need
for domain-specific labeled data or fine-tuning [16]. Even without fine-tuning,
foundational LLMs have been shown to outperform fine-tuned domain-specific
models, for instance in the medical field [14].

Therefore, a pipeline that uses a foundational LLM for NER to extract rel-
evant entities from natural language annotations in RDF data, in combination
with Entity Linking (EL) to map the recognized entities to concepts in existing
Knowledge Graphs (KGs) or ontologies, could be flexible and capable of mak-
ing natural language information machine-accessible and interoperable. With
that approach RDF data could be made more descriptive without the need for
domain-specific model fine-tuning.

Extracting relevant information from text in RDF data is challenging due to
the typically short and variable nature of embedded natural language annota-
tions, which often consist of single-word labels or short sentences in comments.
The inherent ambiguity of natural language, where a concept can be described in
multiple ways and the meaning of a term can change based on context, further
complicates this task. Unlike ontology-based information, which follows a for-
mal schema, natural language annotations are unstructured, making systematic
parsing and interpretation difficult.

In order to extract information from natural language annotations in RDF
graphs, we propose such an extraction pipeline that uses LLM-based NER tech-
niques to identify relevant entities in embedded natural language annotations.
After entity recognition, the pipeline links the identified entities to concepts in
pre-selected KGs and ontologies using a retrieval augmented generation (RAG) [5]
approach with semantic similarity search based on vector embeddings to retrieve
the URIs of identified concepts. By dereferencing these URIs, RDF documents
with additional factual information are retrieved, which are then used for entity
disambiguation and self-verification through knowledge injection techniques [7],
mitigating the risk of hallucination. Finally, the pipeline generates based on the

Enriching RDF Data with NER and EL on Natural Language Annotations 3

identified entities RDF triples and integrates them into the original graph, con-
verting the natural language information into ontology-based, machine-readable,
and interoperable information.

The key contributions of our work are as follows:

– The introduction of a pipeline for transforming natural language annotations
embedded in RDF graphs into additional semantic annotations using LLMs,
NER, and EL.

– The introduction of a KG and knowledge injection-based method for entity
disambiguation and self-verification.

– An evaluation of our LLM-based NER system compared to a traditional
NER method, along with an assessment of the performance of the introduced
pipeline compared to an LLM-only approach.

2 Running Example

To better illustrate the contributions of this work, we use the semantic descrip-
tion of an IoT Bluetooth Low Energy sensor following the Web of Things rec-
ommendation as a running example throughout this paper.

The RDF graph in turtle serialization describing the API of the sensor, is
illustrated in Listing 1.13 and mainly uses the Thing Description ontology [1].

Listing 1.1. RDF graph describing the sensor introduced in the running example in
Turtle serialization with relevant information contained in natural language text. Note
that the contents of td:hasForm statements are omitted for simplicity.

1 [] a td:Thing ;
2 td:title "Flower"@en ;
3 td:description "Xiaomi Flower Care sensor in room 40."@en ;
4 td:hasPropertyAffordance [
5 td:name "temperature" ;
6 jsonschema:readOnly "True"^^xsd:boolean ;
7 td:description "In degrees Celsius."@en ;
8 td:hasForm [...]] ;
9 td:hasPropertyAffordance [

10 td:name "humidity" ;
11 jsonschema:readOnly "True"^^xsd:boolean ;
12 td:description "The humidity value in %."@en ;
13 td:hasForm [...]] .

From the semantic annotations, we can see that the sensor provides two prop-
erty affordances: one named temperature and the other named humidity, and
3 Well-known prefixes are omitted in all listings, but can be looked up on http://
prefix.cc/

http://prefix.cc/
http://prefix.cc/

4 M. Freund et al.

that both affordances are read-only. Additional information is contained in natu-
ral language via the three td:description (lines 3, 7, 12) and the two td:name
annotations (lines 5, 10). Based on those annotations, we as humans can infer
that the device is a Flower Care sensor manufactured by Xiaomi, deployed in
room 40, and capable of measuring relative humidity in percent and temper-
ature in degrees Celsius. But this information is currently only contained in
natural language annotations and is therefore inaccessible to machines without
the capability to process natural language and is therefore not interoperable.

In the following sections, we demonstrate how we extract the information
using NER, associate and link the detected entities with selected vocabularies
and KGs, disambiguate and verify the result, and generate triples to make the
information machine-readable.

3 Related Work

Natural language processing is a difficult task that has challenged researchers
for decades [12]. A subtask of the NLP domain is Named Entity Recognition,
where the objective is to identify and classify relevant entities in text, where
the meaning of entities may be context-dependent, requiring sequence labeling
techniques [13]. Entity Linking complements NER by matching identified enti-
ties with existing concepts in ontologies or KGs. EL systems generate a list of
potential candidates and perform entity disambiguation by considering the con-
text in which the entity is used in the text. After successfully linking an entity
to an associated concept, additional factual information can be used in further
processing steps [20] and the entity can be integrated in the existing RDF graphs
in the form of additional RDF triples.

With the recent increase in popularity of LLMs, such as the GPT series of
models [6], and their ability to process natural language text [26], researchers
have investigated the usability of LLMs for NER tasks. Wang et al. [23] explored
the application of LLMs to NER tasks by introducing an approach called GPT-
NER. The GPT-NER approach transforms the sequence labeling task into a
generation task to exploit the strengths of LLMs. To address issues such as
hallucination and overprediction when no entities are detected, a simple self-
verification step is included, where the LLM is prompted again and asked to
verify the given label. Monajatipoor et al. [11] used LLMs for a specialized NER
task in the biomedical domain and found that providing relevant in-context
examples via the input prompt is key for good performance.

Our work builds on the insights of the two LLM-based NER approaches
and refines them by additionally using entity linking to identify the entities
corresponding concepts in selected ontologies and KGs in order to leverage the
factual knowledge through knowledge injection [7], where relevant information
contained in a KG is provided as additional input to the LLM in order to improve
the quality of the generated output. The introduced pipeline uses knowledge
injection in an entity disambiguation and self-verification step.

Enriching RDF Data with NER and EL on Natural Language Annotations 5

To interact with LLMs, both approaches use so-called prompt engineering
techniques, which involve natural language inputs that define what the LLM
should do. A commonly used basic prompt format consists of an instruction,
a context, and an input text. The instruction provides a general task descrip-
tion, the context offers few-shot examples, and the input text is the text that
needs to be processed [15]. The quality of the prompt can in general impact the
performance of the LLM in the desired task [22]. To solve more complex tasks,
a more advanced chain-of-thought prompt [24] can be used, in which several
intermediate steps of reasoning are used to reach the final goal.

The two previously introduced NER approaches use a simple prompt consist-
ing of instruction, context, and input text. In contrast, we use chain-of-thought
prompting in our pipeline.

To counter the tendency of LLMs to generate irrelevant or false outputs,
known as hallucinations, a widely used approach is retrieval augmented genera-
tion [5]. The RAG method involves retrieving related information through dense
vector similarity search and incorporating it as additional input during inference,
i.e., injecting additional knowledge. Matsumoto et al. [8] implemented RAG in
combination with KGs in a framework called KRAGEN. The authors embed-
ded the entire KG, including all entities and relations, into a vector database to
retrieve the factual information during inference.

In contrast, our approach focuses on embedding only the corresponding URIs
of entities in the KG and using link traversal to retrieve the additional informa-
tion, allowing for greater flexibility and precise linking to identified entities.

4 Enriching RDF Data based on Natural Language
Annotations

Our processing pipeline to enrich RDF data based on embedded natural language
annotations is illustrated in Fig. 1. Enriching RDF data with additional semantic
information extracted from natural language annotations helps to improve the
understandability and interoperability of the data, making it more useful for
various applications in research [19] and industry [2]. The proposed annotation
pipeline consists of four sequential steps: Named Entity Recognition, Entity
Linking, Disambiguation and Self-Verification, and Triple Generation.
The steps are discussed in detail below.

Named Entity Recognition The first step in the proposed processing
pipeline is the recognition of relevant named entities. We start by retrieving the
initial RDF data and extracting natural language annotations, such as labels,
comments, or descriptions, using SPARQL queries. The extracted natural lan-
guage annotations form our input set, which means that no duplicate entries
are processed. Next, we use a foundational large language model to perform the
NER task. The use of a foundational LLM-based NER approach allows us to by-
pass the need to fine-tune traditional NER models for entity recognition across
various domains, which typically requires the manual generation of a significant
number of labeled examples used as training data [18]. To interact with and

6 M. Freund et al.

Named Entity
Recognition Entity Linking

Disambiguation
and

Self-Verification

Triple
Generation

LLM

Valid?

Natural
Language
Annotation

Yes

No

Additional
Semantic

Annotations
Embeddings for
Similarity Search

Fig. 1. The processing pipeline for transforming natural language annotations embed-
ded in RDF data into semantic annotations. Key steps and data flows are illustrated.

instruct the LLM, we create a template that implements a prompting strategy
based on chain-of-thought prompting, where information and definitions about
the NER task and the target domain are introduced, followed by a classical
prompt containing a task description, a small set of few-shot examples, and the
natural language annotation to be classified. In addition, we provide a clear
specification of the expected response format, which improves the consistency of
the LLM output and eases the overall parsing of the generated output, allowing
the integration of the output information into further steps of the processing
pipeline. For each group of named entities that the processing pipeline needs to
recognize, we manually create a template that implements the chain-of-thought
prompting for the specific domain. Groups of named entities include units of
measurement in text (e.g., degrees Celsius) or symbolic form (°C), observable
properties (e.g., temperature), or location-specific entities (e.g., room 40). Fi-
nally, after recognizing the named entities in a natural language annotation, we
task the LLM to verify that the discovered entities have been assigned the correct
label in the context of the natural language annotation, similar to the validation
approach introduced by GPT-NER [23].

Example 1. In the context of the running example, the input set I containing
all natural language annotations is defined as I = {"Xiaomi Flower Care sensor
in room 40.", "temperature", "In degrees Celsius.", "rel . humidity", "The rel .
humidity value in %." }. The NER step processes the input set and generates
the output set R containing corresponding recognized entities where R = {
"Xiaomi", "room 40", "temperature", "degrees Celsius", "humidity", "%"}

Entity Linking The second step of the processing pipeline is entity linking.
During the EL process, we use the named entities identified in the NER step
to construct entity embeddings using a pre-trained deep learning model. The
embeddings are low-dimensional, dense vector representations that encapsulate
the semantic and syntactic properties of the named entities [21]. By calculating

Enriching RDF Data with NER and EL on Natural Language Annotations 7

semantic similarity scores between the embeddings of the recognized named en-
tities and those of pre-selected domain-specific concepts from KGs or ontologies,
we are able to generate a list of potential candidates to which a named entity
might be related. The candidate list may have zero entries if no similar concept
exists in the pre-selected KGs or ontologies, or only one entry if only one similar
concept is found within a given distance. The next task is to disambiguate and
select the most appropriate candidate from the list, taking into account the con-
text provided by the original natural language annotation. This disambiguation
is done in the next step of the pipeline.

Example 2. The entity linking step uses the set R as input and transforms R
into a set E, which contains, for each detected named entity, a candidate list
of potential corresponding ontology or KG entries. In the running example, we
recognize entries from Wikidata4, QUDT5, and a local floor plan KG6.

Only the named entity for humidity produced a candidate list containing
more than one entry, since there exist entries for relative humidity and the ab-
solute humidity simply called humidity. Note, that if the candidate list contains
only one entry, that entry is directly added to the set E instead of the list. There-
fore, the set E is given by E = {"wd:Q1636958", "ex:room40", "wd:Q11466",
"qudt:DEG_C", ["wd:Q2499617", "wd:Q180600"], "qudt:PERCENT"}.

Disambiguation and Self-Verification After performing the linking step,
the next stage of the processing pipeline disambiguates candidates when more
than one potential match is found. If only one candidate is present in the list,
the pipeline verifies the result to ensure the linked entity is meaningful.

If more than one possible candidate is discovered during the entity linking
step, the pipeline first retrieves relevant RDF documents containing definitions
and information about the potential candidates using link traversal starting from
the URIs identified in the EL step. The factual information contained in the
retrieved RDF documents can then be provided as additional input to the LLM.
Specifically, we inject the additional factual knowledge from the RDF data into
the prompt, along with the recognized entity and the original natural language
sentence. The task of the LLM is to verify that the identified concept, based on
the corresponding definition in the RDF document, is correct for the recognized
entity in the context of the sentence and to explain the reasoning steps that lead
to the decision. In a second step, the original task and the generated reasoning
output are fed back to the LLM, which is tasked with generating a final decision
if the concept is correct and outputting either yes or no. This approach allows
the LLM to disambiguate entries in the candidate list using external information
that may change over time and was not available during training using a chain-
of-thought prompting style.

The disambiguation approach can also be seen as self-verification, where ad-
ditional external knowledge is added as context for the LLM to determine if the
4 prefix wd: https://www.wikidata.org/wiki/
5 prefix qudt: https://qudt.org/vocab/unit/
6 prefix ex: https://example.com/

https://www.wikidata.org/wiki/
https://qudt.org/vocab/unit/
https://example.com/

8 M. Freund et al.

entity is being used correctly. Therefore, when the candidate list contains only
one entry, we apply the same steps as in the disambiguation approach to verify
that the candidate is used in the correct context.

If the results are not as expected, or if the candidate list cannot be disam-
biguated or verified, we restart the whole pipeline, repeating the previous entity
recognition and linking steps, and providing the error information as additional
input in the prompt.

Example 3. The Disambiguation and Self-Verification step uses the set E as
input and produces the disambiguated and verified set E′. In the running ex-
ample, only one ambiguity occurred, in the case of humidity. The original natu-
ral language annotation is The humidity value in %. and the recognized en-
tity is humidity. The candidate list contains wd:Q180600 for humidity and
wd:Q2499617 for relative humidity with the following natural language defi-
nitions extracted from the RDF data:

1. humidity: amount of water vapor in the air
2. relative humidity: ratio of the partial pressure of water vapor in humid

air to the equilibrium vapor pressure of water at a given temperature

For each candidate, the original natural language annotation, the recognized
entity, and the RDF data containing, among other things, the natural language
definition presented above are then fed into the LLM, which is tasked with
deciding if the definition is the correct one in the context of the natural language
annotation.

The LLM determines that in this context, relative humidity is the correct
definition because relative humidity is a ratio, and ratios are measured in percent.
The self-verification process did not produce any errors for all other entities.

Therefore, the resulting set E′ is given as E′ = {"wd:Q1636958", "ex:room40",
"wd:Q11466", "qudt:DEG_C", "wd:Q2499617", "qudt:PERCENT"}.

Triple Generation The final step in the processing pipeline is to generate
RDF triples consisting of a subject, predicate, and object for insertion into the
existing RDF graph, thereby making the information extracted from natural
language annotations machine-readable and interoperable. The object position
of the new triple contains the result of the NER and EL processes described in the
previous steps, where named entities were identified and linked to corresponding
entities in existing ontologies and KGs.

To find an appropriate predicate for the identified object, we use a pre-defined
hashmap that maps different types of identified entities to their corresponding
predicates. The use of a hashmap ensures that the relationships between enti-
ties are correct and stored in a scalable way. Additionally, the mapping can be
modified and adjusted to include other ontological terms without the need to
retrain a statistical model. For the subject position of the new triple, we reuse
the same subject as in the original natural language annotation, preserving the
context of the information.

Enriching RDF Data with NER and EL on Natural Language Annotations 9

Listing 1.2. RDF graph describing the sensor, with additional triples generated based
on the embedded natural language annotations.

1 @prefix ex: <https :// example.com/> .
2
3 [] a td:Thing ;
4 td:title "Flower"@en ;
5 td:description "Xiaomi Flower Care sensor in room 40."@en ;
6 schema:manufacturer wd:Q1636958 ;
7 schema:location ex:room40 ;
8 td:hasPropertyAffordance [
9 td:name "temperature" ;

10 jsonschema:readOnly "True"^^xsd:boolean ;
11 sosa:observes wd:Q11466 ;
12 td:description "In degrees Celsius."@en ;
13 qudt:unit qudt:DEG_C ;
14 td:hasForm [...]] ;
15 td:hasPropertyAffordance [
16 td:name "humidity" ;
17 jsonschema:readOnly "True"^^xsd:boolean ;
18 sosa:observes wd:Q2499617 ;
19 td:description "The humidity value in %."@en ;
20 qudt:unit qudt:PERCENT ;
21 td:hasForm [...]] .

Example 4. The Triple Generation step uses E′ as input and generates the set of
all output triples T . For instance, consider the first entry in E′ where the NER
step detected Xiaomi with the label manufacturer. The linking step linked the
entity to wd:Q1636958, and the disambiguation and self-verification step con-
firmed the correctness. Therefore, we know that a manufacturer has been recog-
nized, and we look up the predicate associated with the label manufacturer in
the hashmap, which returns the property schema:manufacturer. The original
natural language annotation was associated with a blank node of type td:Thing,
so the new triple will also be associated with the same blank node. The generated
triple t1 ∈ T is therefore given as t1 = ([], schema:manufacturer, wd:Q1636958).

After all additional triples have been generated, all elements of the set T are
added to the RDF graph, as shown in Listing 1.2. The information previously
contained only in natural language annotations is now available as machine-
readable and interoperable semantic annotations (lines 6, 7, 11, 13, 18, 20),
resulting in a much more expressive RDF graph overall.

10 M. Freund et al.

5 Empirical Evaluation

We evaluated the introduced pipeline using the Gemma2 27B language model
which is part of Googles Gemma family of language models [9] and we link found
entities against the Wikidata KG, and classes in the QUDT ontology.

In the empirical evaluation, we aim to answer the following two research
questions:

– R1: How accurate is the foundational LLM-based NER approach for extract-
ing entities from RDF graphs with natural language annotations compared
to the classical approach of fine-tuning a domain-specific NER model?

– R2: How accurate is the pipeline using chain-of-though prompting in iden-
tifying and linking correct entities compared to the pipeline without chain-
of-though prompting and to an approach using only the LLM?

All results and scripts to reproduce the evaluation can be found on GitHub7.

5.1 R1: Comparison of LLM-based NER with Existing Approaches

In our comparative analysis, we focus on the recognition of units of measure in
textual form (e.g., degrees Celsius) and symbolic form (e.g., °C). In addition, we
recognize observable properties (e.g., temperature). We evaluated our proposed
pipeline against a fine-tuned English language NER model8. The model was fine-
tuned using the spaCy9 framework on a synthetic data corpus specific to the IoT
and WoT domains, generated using the llama3 70B language model based on
a small hand-crafted dataset [25]. The corpus includes three SI base units with
corresponding observed properties (time, length, and mass) and three derived
SI units with corresponding observed properties (temperature, frequency, and
acceleration), as well as percent as a pseudo-unit for dimensionless ratios such
as the observed property relative humidity. Our corpus contains a total of 5,769
entries. A training script and the data corpus are available on GitHub10

For the comparison with the fine-tuned NER model and the pipeline, we
use a dataset from the IoT/WoT domain. The dataset consists of a total of 69
RDF graphs describing APIs of IoT devices. Of these, 68 RDF graphs come
from the W3C WoT TD implementation report11 and are based on APIs of
working systems created by contributing organizations such as Siemens AG,
Intel, and Oracle. In addition, one RDF graph was manually created describing
the interface of a Xiaomi Flower Care sensor used in the running example. The
69 RDF graphs contain a total of 620 natural language annotations in the form of
td:name or td:description of which 44 contain references to units or observed
properties.
7 https://github.com/FreuMi/ner_pipeline
8 https://spacy.io/models/en#en_core_web_lg
9 https://github.com/explosion/spaCy

10 https://github.com/FreuMi/NER_Training
11 https://w3c.github.io/wot-thing-description/testing/report.html;

available as a single RDF file at https://www.vcharpenay.link/talks/
td-sem-interop.html.

https://github.com/FreuMi/ner_pipeline
https://spacy.io/models/en#en_core_web_lg
https://github.com/explosion/spaCy
https://github.com/FreuMi/NER_Training
https://w3c.github.io/wot-thing-description/testing/report.html
https://www.vcharpenay.link/talks/td-sem-interop.html
https://www.vcharpenay.link/talks/td-sem-interop.html

Enriching RDF Data with NER and EL on Natural Language Annotations 11

Table 1. Comparison of classical fine-tuning and LLM-based NER approaches. The
average runtime per annotation is reported in seconds.

Classical Approach LLM-based Approach
True Positives 33 40
False Positives 2 9
False Negatives 11 4

F1 Score 0.84 0.86
Avg. Runtime [s] 0.009 27.9

The results of the evaluation in Table 1 show that the foundational LLM-
based NER approach is able to correctly detect 40 unit and observed property
references in the annotations and reaches a similar F1 score as the classical
approach of fine-tuning a NER model. However, the results also show that the
LLM-based NER approach produces more than four times as many false positives
as the classical approach, but is able to detect more true positives. The difference
in true positives is likely explained by a lack of training data for the classical
approach. Adding even more labeled training data to the corpus could allow the
model to generalize better and recognize more entities in complex scenarios, such
as those involving different contexts or rare entity types.

Overall, the LLM-based NER approach achieves comparable results to a clas-
sical fine-tuned NER system, but requires additional processing of the detected
entities to reduce the number of false positives. Additionally the runtime of the
LLM-based approach is much higher than the classical approach due to higher
computational requirements.

5.2 R2: Pipeline Evaluation

To evaluate the effectiveness of our proposed pipeline, which integrates NER,
RAG-based entity linking, and LLM-based disambiguation with self-verification
through chain-of-thought prompting, we conducted a comparison with two alter-
native approaches. The first comparison is with a pipeline implementation that
uses similar techniques except for the chain-of-thought prompting style. The sec-
ond comparison is with an implementation that uses prompting methods that
rely solely on the LLM’s internal data and information to identify and validate
detected entities.

For the evaluation, we used a dataset consisting of 50 manually generated
example natural language annotations focusing on units of measurement with
ambiguities, inspired by sensor data sheets. The task is to identify the name of
the unit of measurement entity based on the symbolic unit representation in the
context of the sentence. The dataset is publicly available on GitHub12.

An example from the dataset where disambiguation is needed is the natural
language annotation Time measured in S. Here, the unit stands for seconds, even
though the letter S is capitalized. The S does not stand for the unit Siemens,
12 https://github.com/FreuMi/ner_pipeline/tree/main/evaluation/dataset

https://github.com/FreuMi/ner_pipeline/tree/main/evaluation/dataset

12 M. Freund et al.

which also uses the letter S to describe electrical conductance, because that inter-
pretation does not make sense in the context of the natural language annotation.

Another example where self-verification is required, is the natural language
annotation The length l is 10 m. The NER system might detect l, which typically
stands for liters, and m, which typically stands for meters, as symbolic units.
However, in the context of this annotation, only the unit m is relevant, since the
letter l is simply the name for a certain length and there is no reference to the
unit liters.

Table 2. Comparison of the pipeline with chain-of-thought (CoT), the pipeline without
CoT, and an approach using an LLM-only method. The average runtime for each
approach per annotation is reported in seconds.

Pipeline w/ CoT Pipeline w/o CoT LLM only
True Positives 39 40 41
False Positives 3 12 25
False Negatives 2 1 0

F1 Score 0.94 0.86 0.77
Avg. Runtime [s] 326.8 42.7 21.3

The results in Table 2 show that the LLM-only approach achieves an F1 score
of 0.77 and successfully detects all possible entities, i.e. the 41 true positives.
However, it fails to filter out entities that do not fit the context of the sentence,
resulting in a high number of false positives.

The pipeline approach without chain-of-thought prompting achieves an F1
score of 0.86, with approximately half the number of false positives compared to
the LLM-only approach, while maintaining an almost similar number of 40 true
positives. These results suggest that the inclusion of external factual information
in the form of RDF data helps the LLM to make more accurate decisions about
whether the correct entity has been identified.

Finally, the pipeline approach with chain-of-thought prompting achieves the
highest F1 score of 0.94, providing an additional improvement of approximately
0.08 over the pipeline approach without chain-of-thought prompting. This ap-
proach further reduces the number of false positives, but detects almost the
same number of 39 true positives compared to the 40 and 41 true positives of
the previous approaches. These results suggest that the combination of external
knowledge and the chain-of-thought reasoning capabilities of the LLM improves
its ability to determine whether an entity is correctly used in a sentence.

Overall, the chain-of-though based processing pipeline achieves the best re-
sults in our evaluation, but also has the highest average runtime, which is about
7 times slower than the pipeline without chain-of-thought prompting and about
15 times slower than the LLM-only approach.

Enriching RDF Data with NER and EL on Natural Language Annotations 13

6 Conclusion and Future Work

In this paper, we presented a processing pipeline for improving the machine-
readability and interoperability of RDF data by extracting relevant information
contained only in natural language annotations to generate semantic annota-
tions. The pipeline employs LLM-based named entity recognition and semantic
similarity-based entity linking. To disambiguate when multiple linkable candi-
dates are found during the EL step, the pipeline uses the context, i.e., the natural
language annotation, the candidate, and the RDF definition of the candidate re-
trieved from the ontology or KG using link traversal as input to the LLM to
evaluate if the entity makes sense in the given context using chain-of-though
prompting. If only one entity is found, the pipeline uses the same approach as
for disambiguation by injecting the detected factual information as input to the
LLM to verify the results. In our evaluation, we found that the foundational
LLM-based NER approach performs on par with the traditional approach of
fine-tuning an NER model for a specific domain. Additionally, we demonstrated
the effectiveness of the pipeline using entity linking and the chain-of-though
based disambiguation and self-verification steps, compared to a pipeline imple-
mentation without chain-of-though prompting and to an implementation relying
only on the LLM without external information.

Future work will focus on further optimization of the pipeline, such as ex-
ploring the performance of other LLMs, especially smaller models with reduced
computational requirements, to reduce the processing time and also enable po-
tential deployment of the pipeline at the network edge in an IoT context.

Acknowledgments. This work was partially funded by the German Federal Ministry
for Economic Affairs and Climate Action (BMWK) through the Antrieb 4.0 project
(Grant No. 13IK015B) and the MANDAT project (Grant No. 16DTM107A).

References

1. Charpenay, V., Käbisch, S.: On modeling the physical world as a collection of
things: The w3c thing description ontology. In: European Semantic Web Confer-
ence. pp. 599–615. Springer (2020)

2. Freund, M., Rott, J., Dorsch, R., et al.: FAIR Internet of Things Data: Enabling
Process Optimization at Munich Airport. In: European Semantic Web Conference.
Springer (2024)

3. Kaebisch, S., McCool, M., Korkan, E., Kamiya, T., Charpenay, V., Kovatsch,
M.: Web of Things (WoT) Thing Description 1.1. https://www.w3.org/TR/
wot-thing-description/ (2023)

4. Lagally, M., Matsukura, R., McCool, M., et al.: Web of Things (WoT) Architecture
1.1. https://www.w3.org/TR/wot-architecture/ (2023)

5. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H.,
Lewis, M., Yih, W.t., Rocktäschel, T., et al.: Retrieval-augmented generation for
knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems
33, 9459–9474 (2020)

https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-architecture/

14 M. Freund et al.

6. Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., et al.: Language models are few-
shot learners. arXiv preprint arXiv:2005.14165 1 (2020)

7. Martino, A., Iannelli, M., Truong, C.: Knowledge injection to counter large lan-
guage model (llm) hallucination. In: European Semantic Web Conference. pp. 182–
185. Springer (2023)

8. Matsumoto, N., Moran, J., Choi, H., Hernandez, M.E., Venkatesan, M., Wang, P.,
Moore, J.H.: Kragen: a knowledge graph-enhanced rag framework for biomedical
problem solving using large language models. Bioinformatics 40(6) (2024)

9. Mesnard, T., Hardin, C., Dadashi, R., et al.: Gemma: Open models based on gemini
research and technology. arXiv preprint arXiv:2403.08295 (2024)

10. Min, B., Ross, H., Sulem, E., Veyseh, A.P.B., Nguyen, T.H., Sainz, O., Agirre, E.,
Heintz, I., Roth, D.: Recent advances in natural language processing via large pre-
trained language models: A survey. ACM Computing Surveys 56(2), 1–40 (2023)

11. Monajatipoor, M., Yang, J., Stremmel, J., Emami, M., Mohaghegh, F.,
Rouhsedaghat, M., Chang, K.W.: Llms in biomedicine: A study on clinical named
entity recognition. arXiv preprint arXiv:2404.07376 (2024)

12. Nadkarni, P.M., Ohno-Machado, L., Chapman, W.W.: Natural language process-
ing: an introduction. Journal of the American Medical Informatics Association
18(5), 544–551 (2011)

13. Nasar, Z., Jaffry, S.W., Malik, M.K.: Named entity recognition and relation ex-
traction: State-of-the-art. ACM Computing Surveys (CSUR) 54(1), 1–39 (2021)

14. Nori, H., Lee, Y.T., Zhang, S., Carignan, D., Edgar, R., Fusi, N., King, N., Larson,
J., Li, Y., Liu, W., et al.: Can generalist foundation models outcompete special-
purpose tuning? case study in medicine. arXiv preprint arXiv:2311.16452 (2023)

15. Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., Wu, X.: Unifying large language
models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and
Data Engineering (2024)

16. Qin, C., Zhang, A., Zhang, Z., et al.: Is chatgpt a general-purpose natural language
processing task solver? arXiv preprint arXiv:2302.06476 (2023)

17. Rantala, H., Ikkala, E., Rohiola, V., et al.: Findsampo: A linked data based portal
and data service for analyzing and disseminating archaeological object finds. In:
European Semantic Web Conference. pp. 478–494. Springer (2022)

18. Satheesh, K., Jahnavi, A., Iswarya, L., Ayesha, K., Bhanusekhar, G., Hanisha, K.:
Resume ranking based on job description using spacy ner model. International
Research Journal of Engineering and Technology 7(05), 74–77 (2020)

19. Scheffler, M., Aeschlimann, M., Albrecht, M., et al.: FAIR Data Enabling New
Horizons for Materials Research. Nature 604(7907), 635–642 (2022)

20. Sevgili, Ö., Shelmanov, A., Arkhipov, M., et al.: Neural entity linking: A survey of
models based on deep learning. Semantic Web 13(3), 527–570 (2022)

21. Shen, W., Li, Y., Liu, Y., et al.: Entity linking meets deep learning: Techniques and
solutions. IEEE Transactions on Knowledge and Data Engineering 35(3), 2556–
2578 (2021)

22. Wang, S., Zhao, Z., Ouyang, X., Wang, Q., Shen, D.: Chatcad: Interactive
computer-aided diagnosis on medical image using large language models. arXiv
preprint arXiv:2302.07257 (2023)

23. Wang, S., Sun, X., Li, X., et al.: Gpt-ner: Named entity recognition via large
language models. arXiv preprint arXiv:2304.10428 (2023)

24. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q.V., Zhou,
D., et al.: Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems 35, 24824–24837 (2022)

Enriching RDF Data with NER and EL on Natural Language Annotations 15

25. Whitehouse, C., Choudhury, M., Aji, A.F.: Llm-powered data augmentation for
enhanced cross-lingual performance. arXiv preprint arXiv:2305.14288 (2023)

26. Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Zhong, S., Yin, B., Hu,
X.: Harnessing the power of llms in practice: A survey on chatgpt and beyond.
ACM Transactions on Knowledge Discovery from Data 18(6), 1–32 (2024)

	Enriching RDF Data with LLM based Named Entity Recognition and Linking on Embedded Natural Language Annotations

